

Liquidity of the Financial Market and the Financing Decision. What Relation? Case of Kuwaiti Financial Market(2011-2018)

Azed BRAHIMI

LEZINRU Laboratory, Bordj Bou Arreridj University Algeria azed.brahimi@univ-bba.dz

Mouloud MELIKAOUI

DASFACE Laboratory, Blida 02 University Algeria melikaouim@yahoo.fr

Received:01/12/2021

Accepted:25/02/2021

Abstract :

This study aims to measure the relationship between liquidity of the financial market and the financing decisions in the industrial companies by econometric method, throughout applying the study on twenty four companies listed in the Kuwait financial market from the period 2011 to 2018 Using the panel data and stata 16, the study model includes three models fundamental depending on the types of the financing decision, which is represented in ordinary shares financing, long term loans financing and retained earning financing.

the study have found that the level of liquidity of the Kuwait financial market play the mainly role in choose the financing decisions of the listed industrial enterprises, where the higher the liquidity of the Kuwait financial market leads the enterprises to finance through ownership(47,82%). However, if the liquidity of the Kuwait financial market decreases, it leads the enterprises to finance through long-term loans(27,48%) and retained earnings(21,43%).

Key Words: liquidity, financial market, ordinary shares financing, long term loans financing, retained earnings financing.

JEL Classification : G32.

* Corresponding author: Brahimi azed (azed.brahimi@univ-bba.dz)

Introduction :

A big attention has been attributed to the topic of financing economic companies from researchers, especially in the field of financial management, as it represents the most important pillars that contribute to its growth and development, as it provides it with funds that guarantee the continuation of its activities. Therefore, companies must take a rational financing decision through a good assessment amid the available funding sources and choose the most appropriate one to cover their needs, as the company resorted to financing its needs from internal financing sources, especially retained earnings, and external financing sources from financial institutions and financial markets, as the financial markets have a fundamental role in financing companies, through the latter offering financial tools in the financial markets in order to obtain sufficient funds. However, this requires high efficiency, effectiveness and high liquidity in the financial markets. The more the movement

and activity of the financial markets, the faster the stock trading in the financial markets, and consequently the possibility of obtaining adequate financing through several options available to the company.

The degree of liquidity of financial markets plays an essential role in shaping the financing decision in companies. The more companies raise their securities in active markets, the faster the speed of trading of these securities, thus ensuring the company financing through them. Nevertheless if the market is inactive, the company is forced to resort to borrowing through bank loans and self-financing, and therefore this is what affects its financing decision.

From the above, we have the following problem: **How does the degree of liquidity of the Kuwait financial market contribute to the financing decisions in industrial enterprises?** In order to answer the problem, a set of hypotheses was developed.

Hypotheses:

- First hypothesis: the high liquidity of the Kuwait financial market leads enterprises to finance through ordinary shares.

- Second hypothesis: the low liquidity of the Kuwait financial market leads enterprises to finance through long-term loans.

- Third hypothesis: the low liquidity of the Kuwait financial market leads enterprises to finance through retained earnings.

Methodology and tools:

in order to achieve the aims of study we used the econometric method to test the relationship between financial market liquidity and financing decision, also we used the panel data and stata 16.

Previous studies:

A study by Iman Abdel-Muttalib Hussein Al-Mawla (2011), titled: Indicators of measuring the liquidity of the stock market and its impact on economic growth. It aimed to determine indexes to measure the liquidity of financial markets represented in (market value to GDP, trading value to GDP, turnover rate) and to test the relationship of these indexes with economic growth represented by the rate of GDP growth. The study sample was a group of Arab stock exchanges for the period from 1994 to 2007. She used The Arab Monetary Fund to collect data; and to test the relationship simple linear regression was relied on. One of its main results was in its standard study that the liquidity provided by the stock market does not exert a significant effect on the economic growth of the countries under study. (Imane abdel muttalib, 2011)

Mariana Khapko's (2009) study titled: The Impact of Financial Market Liquidity on Corporate Finance Decisions. The study aimed to examine whether the liquidity of the stock market affects the financing behavior of companies, where the researcher expected that the degree of liquidity associated with the company's shares will affect the targeted leverage and capital structure adjustments that the company undertakes. In order to determine the effect of stock market liquidity on corporate financing, liquidity measures suggested by asset pricing literature were used as brokerage costs in transactions faced by investors and linked to institutional capital

structures. Faced with the need to attract new capital, companies are likely to issue debt in a less liquid financial market, and thus market imbalances play a role in the corporate financing option. (Mariana, 2009)

Study of Tung Lam Dang, Hai Ly Ho, Chi Dzung Lam, Thanh Thao Tran and Xuan Vinh Vo (2019) titled: Equity Liquidity and Capital Structure. Relying on the assumption that the stock market provides useful information for decision-making This study examines the effect of financial market liquidity on the company's capital structure decision, and analyzed whether this effect varies from country to country according to the different institutional environments. Using comprehensive international data, 19939 companies in 41 countries during the period 2000-2010 have presented the research paper with two main results:

First, companies with high liquidity in the stock market tend to have less leverage, and secondly, countries with strong institutional environments are characterized by a negative relationship between stock market liquidity and leverage. (Tung lam, Hai Ly, Chi Dzung, Thanh, & Xuan, 2019)

The study of Andreas R. Dombret, Daniel Foos, Kamil Pliszka, Alexander Schulz (2018) titled: What are the Real Effects of Financial Market Liquidity? The study aimed to analyze the effect of financial market liquidity on bank lending in the Euro area in various sectors during the period 2003-2016. The results of the study as a whole show that the liquidity of the financial market is positively related to the size of loans and is negatively related to credit differences. During the 2007-2009 financial crisis and the European debt crisis, liquidity of financial markets decreased and bank lending was reduced and banks required higher credit margins. It is important that the liquidity of the financial market has an asymmetric effect on bank lending, the negative effect of the decrease in the liquidity of the financial market liquidity, and this is especially true for corporate loans where the terms of lending will be constraints in times of poor liquidity in the financial market. (Andreas R, Daniel, Kamil, & Alexander, 2018)

I. Theoretical literature

1. Financial Market Liquidity concept

1.1. Definition of financial market liquidity

The financial market provides the following three main functions: price discovery, low transactions costs and liquidity (Frank j, 2009, p. 113), the latter is defined as the ability to trade securities at a low cost and with little impact on the price as well as that liquidity gives investors the flexibility to sell their properties when needed, and liquidity creates greater value for trading activities in the short term than trading in the long term. (Ayed & Mohamed Hamdane, 2014, p. 180) There are those who see that liquidity in the financial markets facilitates the effective distribution of capital and risks. (pwc, 2015, p. 17)What the investor wants from the financial market is sufficient liquidity in the market. Liquidity refers to the ability of a market to

absorb large amounts of transactions without causing price fluctuations. Among the advantages of highly liquid markets is the distance between the purchase price and the proposed selling price (Noori & Khatibi, 2013, p. 111),you may have heard or read that the foreign exchange market is the deepest and most liquid market in the world. (Carley, 2012, p. 14) Liquidity in the financial market is a multi-dimensional concept, it refers generally to the ability to execute large transactions with a limited impact on price, and tends to be linked to lower transactions costs and immediate execution. (pwc, 2015, p. 17) Liquidity in the financial market is usually understood as the ability of the market to absorb a large amount of transactions without causing excessive price movements, in addition to that liquid markets are characterized by narrow bid and ask spreads, and this means that transactions are carried out in a cost-effective manner. (IOSCO, 2007, p. 06)

Liquidity is determined in secondary markets by the success of the public approach in a way that reduces the cost and risks for companies and market makers. It also reduces the cost to investors by ensuring a lower cost for fluctuations and transactions, and therefore from a holistic perspective, liquid capital markets are necessary for effective capital allocation, which leads to a decrease in the cost of capital for exporters. On the micro level, the liquid financial market guarantees access to a diverse group of investors who have different trading strategies. In general, we can say that the liquidity of the financial market refers to the depth, breadth, degree of flexibility and speed of trading present in the market: (IOSCO, 2007, pp. 6-7)

- Market depth: it means the effect of large trading volume on price movements.

- Market breadth: the difference in supply and demand is a common sign of market breadth.

- Market flexibility: it means the period of time it takes to reach equilibrium in the event of large price fluctuations, such fluctuations usually occur due to news flows (usually negative news) or large trading volumes. Flexible market is a strong market where prices return to medium or fair value within a short period of time.

- Trading Speed: it means the speed at which the market absorbs transactions. In the liquid market, transactions are executed with minimal time difference.

Conventional measures of financial market liquidity include trading volume or number of deals, market turnover, supply and demand differentials and speed of trading. We note that financial market liquidity is an important factor affecting market efficiency. Liquidity is important to the effective functioning of the financial market, as liquidity in financial markets facilitates the effective allocation of economic resources through the effective allocation of capital and risk, the effective generation of information about the source and its dissemination, and the effectiveness of monetary policy and financial stability. (pwc, 2015, p. 17)

1.2. Financial market liquidity benefits

Financial markets are a major source of financing business growth and they provide important access for investors to invest and earn returns. Policymakers increasingly realize the importance of developing capital markets as an alternative to bank financing. The recent proposal of the European Union Capital Markets

Union seeks to develop deep and liquid cross-border financial markets that complement banks as a source of financing. Financial market liquidity facilitates the effective allocation of economic resources through a number of channels: (pwc, 2015, p. 20)

- Effective capital markets facilitate the global flow of capital between investors or savers and borrowers, and this generates benefits for the economy, as studies show that liquidity in stock markets has a statistically significant relationship to current and future economic growth rates, and investment banks impose lower fees on companies with more liquid stocks because it requires less risk management, and liquid financial markets provide various sources of financing in addition to conventional bank lending.

- Liquid capital markets also facilitate the distribution of financial risks to participants in the most capable and willing market, and enable investors to manage risks and hedge them, as well as modify their financial portfolios effectively.

- Liquidity is necessary to generate and publish information about the source. In the stock market context, movements in the share price are likely to reveal important information about changes in the company's value in liquid financial markets, and may also reflect liquidity risks.

- The effectiveness of monetary policy depends on the conditions of liquidity of the financial markets, where the effectiveness of monetary policy is partly lost caused by the high monetary market rates due to the high levels of liquidity. Therefore, the liquidity of financial markets is a major factor in ensuring the effectiveness of monetary policy.

- Deep and liquid financial markets are important for financial stability, as market participants need liquid financial markets in order to effectively manage risks and their financing needs. Financial market liquidity is also crucial to maintaining the resilience of financial markets in times of tension.

2. Definition of financing decision

It is a decision that involves choosing the source or sources from which the necessary funds will be obtained for the company in order to finance the investment in its assets (Elghathi abdellah, 2016, p. 309), through an optimal distribution of the sources available to the company over the various types of liabilities and property rights in a way that balances the appropriate financing in each of the terms of the liabilities and rights ownership, without exaggeration, leads to increased costs or scarcity that leads to lower operating returns, provided that no excessive profit target which may lead to loss or bankruptcy.

The financing decision covers three main types of decisions:

- Determine the appropriate financial structure, i.e. the choice between self-financing, equity financing, or debt financing

- Dividend policy, i.e. the choice between reinvesting profits (retaining earnings) and distributing dividends to shareholders;

- The test between internal financing (self-financing) and external financing (funds provided by shareholders or borrowings).

These decisions are usually taken at the highest levels of management, and are approved by the company's board of directors because they are among the most important decisions for the company's long-term viability. (Erich A, 2001, p. 33) The financial manager has the responsibility to make a proper choice of the appropriate financing source in light of the required return and the risk that can be accepted. We reiterate that the financial manager's work is not limited to simply "identifying the sources of funds, but it is also his responsibility to obtain them with the best conditions and to specify that mix of funds that do not entail the largest possible return or the lowest possible cost."

II. Method and Materials

1. Study sample and population:

The study population is represented in the enterprises listed in the Kuwait financial market operating in various sectors (industrial, banks, insurance companies, real estate companies ...). The study sample includes the industrial enterprises listed in the Kuwait Stock Exchange represented by 24 companies during the period from 2011 to 2018, with the exclusion of the year 2015 for the lack of data during that year, as well as the exclusion of two industrial enterprises because they did not start their activities during the period 2011 and was after that.

2. The methodology of the analysis:

The methodology used in the analysis is the use of time series through the panel data, where the model used in the books has been defined as follows:

Panel data or longitudinal data is a set of observations of individuals (countries, enterprises, etc.) in several time periods, so that it allows the researcher to model or study differences in individuals' behavior. (William H, 2002, p. 284)

Through the dual dimension (both individual and temporal dimensions) that characterizes the panel data, these data provide us with new perspectives in the applied economy, and in particular, they make it possible to better represent the behavior of individuals (family, companies, employees, regions, countries...). etc. It has become possible to define economic models on the basis of microeconomics and work on panel data, this is why it is important to understand the characteristics of panel data, as although it has some disadvantages, the richness and intensity of information is one of the characterizing features of panel data. (Alain, 2011, p. 09)

3. Method of estimating the standard model:

The first step is to test the examination of the property of heterogeneity or nonheterogeneity in the data used in the study, this occurs by relying on the homogeneity tests of Hsiao. The second step is to estimate the three models, and the third step, is two tests that involve choosing between the pooled model and the fixed effects model, before choosing between the fixed effects model and the random effects model and these two tests confirm the validity of the Hsiao test result. As for the fourth step, it is to define its quality criteria, so that the interpretation of the results obtained is a logical interpretation identical to the theoretical interpretation, statistical interpretation, or both.

4. Study model:

The study model can be divided into three models according to the dependent variables represented in equity financing, long-term loans financing and retained earnings financing.

The first model: represents the relationship between liquidity of the financial market as an independent variable and financing in ordinary shares as a dependent variable according to the following relationship:

$$LOG OSF_{it} = \hat{\beta}_0 + \hat{\beta}_1 LOG LFM_{it} + \hat{\beta}_2 LOG FC_{it} + \hat{\beta}_3 LOG NCF_{it} + \hat{\beta}_4 LOG SIZE_{it} + \hat{\beta}_5 STRA_{it} + \hat{\beta}_6 SOLV_{it} + \hat{\beta}_7 ROE_{it} + \varepsilon_{it} \quad i = (1 ... n)(t = 1 ... k)$$

Given that:

OSF: ordinary shares financing

LFM: Liquidity of the financial market which is measured by the size of shares traded in the financial market

FC: finance cost

NCF: net cash flow

SIZE: the size of enterprise which is measured by log of assets value

STRA: the assets structure which is measured by dividing the fixed assets on total assets

SOLV: the degree of financial solvency of the enterprises which is measured by dividing the total assets on total liabilities

ROE: return on equity which is measured by dividing the net income on equity

ε_{it:errors} random

The second model: represents the relationship between liquidity of the financial market as an independent variable and long-term loans financing as a dependent variable according to the following relationship:

$$LOG LTLF_{it} = \hat{\beta}_0 + \hat{\beta}_1 LOG LFM_{it} + \hat{\beta}_2 LOG FC_{it} + \hat{\beta}_3 LOG NCF_{it} + \hat{\beta}_4 LOG SIZE_{it} + \hat{\beta}_5 STRA_{it} + \hat{\beta}_6 SOLV_{it} + \hat{\beta}_7 ROE_{it} + \varepsilon_{it} \quad i = (1 ... n)(t = 1 ... k)$$

Given that:

LTLF: Long term loans financing

LFM: Liquidity of the financial market

The third model: represents the relationship between liquidity of the financial market as an independent variable and financing with retained earnings as a dependent variable according to the following relationship:

$$LOG RE_{it} = \hat{\beta}_0 + \hat{\beta}_1 LOG LFM_{it} + \hat{\beta}_2 LOG FC_{it} + \hat{\beta}_3 LOG NCF_{it} + \hat{\beta}_4 LOG SIZE_{it}$$

$$+ \hat{\beta}_5 STRA_{it} + \hat{\beta}_6 SOLV_{it} + \hat{\beta}_7 ROE_{it} + \varepsilon_{it} \quad i = (1 \dots n)(t = 1 \dots k)$$

Given that:

RE: retained earnings

LEF: Liquidity of the financial market

5. Description of study variables:

The model used includes one independent variable and three dependent variables, and six controlled variables

- The independent variable is the liquidity of the financial market, which is expressed by the number of shares traded in the Kuwaiti financial market.

- The dependent variable is the financing decision which is divided into three sections, ordinary shares finance, long term loans and retained earnings finance.

- The control variables which are divided into six variables: finance cost, net cash flow, size of enterprise, structure assets, financial solvency, return on equity.

From the above, our study is divided into three models: The first model is for estimating the relationship between the liquidity of the financial market for all sectors as an independent variable and the value of ordinary shares financing as a dependent variable. The second model is for estimating the relationship between liquidity of the financial market for all sectors as an independent variable and longterm loans financing as a dependent variable, and the third and final model is for estimating the relationship between financial market liquidity for all sectors as an independent variable and retained earnings financing as a dependent variable.

III. Results and Discussion:

1. Hsiao homogeneity test(Hsiao 1986):

The first model: The relationship between liquidity of the financial market and financing with ordinary shares. The results of this test are shown in the table(01) **Table1: «homogeneity test results for first model»**

Table1. «nonlogeneity test results for mist model»				
Hypotheses	Fisher statistic	prob		
H ₁ (calculated Fisher F ₁)	15.22348	0.002556		
H ₂ (calculated Fisher F ₂)	0.446784	0.568874		
H ₃ (calculated Fisher F ₃)	25.11477	2.42E-05		

source: Eviews 10

We notice from Table 01 that the calculated statistical value of Fischer $F_1(0,002556)$ is smaller than the value of Fischer fixed at the 1% and 5% thresholds, which allows us to reject the null hypothesis(there is no full homogeneity), that is why we are now comparing the calculated Fisher $F_2(0,568874)$ that appears to be bigger than the Fischer fixed at the 1% and 5% thresholds, allowing us to accept the null hypothesis that the regression parameters of explanatory variables are the same among companies and that the source of the difference may be in the cross-parameters. Thus, we notice that the calculated statistical value of Fischer $F_3((2.42E - 05))$ is smaller than Fischer fixed at the single thresholds 1% and 5%, this allows us to reject the null hypothesis that cross-parameters are the same among companies, that is, we are in a state of model with individual effects.

The second model: The relationship between financial market liquidity and long-term loans financing. The results of this test are shown in the table(02)

Fable2:	<i>«homogeneity</i>	test	results	for	second	model»
					Second	III O GOL

Hypotheses	Fisher statistic	prob
H ₁ (calculated Fisher F ₁)	10.33267	0.0004789
H ₂ (calculated Fisher F ₂)	1.998741	0.2644789
H ₃ (calculated Fisher F ₃)	17.44759	4.44E-05

source: Eviews 10

We notice from Table 02 that the calculated statistical value of Fischer $F_1(0,0004789)$ is smaller than the value of Fischer fixed at the 1% and 5% thresholds, which allows us to reject the null hypothesis(there is no full homogeneity), that is why we are now comparing the calculated Fisher $F_2(0,2644789)$ that appears to be bigger than the Fischer fixed at the 1% and 5% thresholds, allowing us to accept the null hypothesis that the regression parameters of explanatory variables are the same among companies and that the source of the

difference may be in the cross-parameters. Thus, we notice that the calculated statistical value of Fischer F_3 (4.44E – 05) is smaller than Fischer fixed at the single thresholds 1% and 5%, this allows us to reject the null hypothesis that cross-parameters are the same among companies, that is, we are in a state of model with individual effects.

The third model: The relationship between liquidity of the financial market and financing with retained earnings. The results of this test are shown in the table(03)

Table3: «ho	omogeneity	test result	ts for th	ird model»	

Hypotheses	Fisher statistic	prob
H ₁ (calculated Fisher F ₁)	11.00215	0.001556
H ₂ (calculated Fisher F ₂)	1.224589	0.554789
H ₃ (calculated Fisher F ₃)	33.77894	3.89E-06

source: Eviews 10

We notice from Table 03 that the calculated statistical value of Fischer $F_1(0,001556)$ is smaller than the value of Fischer fixed at the 1% and 5% thresholds, which allows us to reject the null hypothesis(there is no full homogeneity), that is why we are now comparing the calculated Fisher $F_2(0,554789)$ that appears to be bigger than the Fischer fixed at the 1% and 5% thresholds, allowing us to accept the null hypothesis that the regression parameters of explanatory variables are the same among companies and that the source of the difference may be in the cross-parameters. Thus, we notice that the calculated statistical value of Fischer $F_3(3.89E - 06)$ is smaller than Fischer fixed at the single thresholds 1% and 5%, this allows us to reject the null hypothesis that cross-parameters are the same among companies, that is, we are in a state of model with individual effects.

2. Estimate the panel models

To achieve this goal, three models will be applied: the pooled regression model(PRM), the fixed effects model(FEM) and the random effects model(REM), and depending on the stata 16 program, we get the following results:

2.1. Estimate the first model

The results of estimation show through the table follow:

Period: 2011-2018	3 N=24 T=	7 total pane	el views= 168
Explanatory variables	Pooled regression	Fixed Effects	Random Effects
	model(PRM)	Model(FEM)	Model (REM)
Constante	-6,955786	-0,0039562	-1,733018
LFM	0,1280504	0,4782271	0,712349
FC	-0,0203147	0,0044884	0,004093
NCF	0,2268198	0,0275849	0,0747412
SIZE	0,7376242	0,1075378	0,263544
STRA	0,0067314	0,0044068	0,0046535
SOLV	0,0346689	0,0098285	0,0116505
ROE	-0,0080314	-0,0005722	-0,0008343
Adjusted R- squared	0,4958	0,8310	0,7690
F- statistic	93,97	88,97	66,62
Prob (F- statistic)	0.0000	0.0000	0.0000

 Table4: «results of estimate the panel models»

source: Stata16 Output (Appendice 01)

After estimating the three models: the pooled regression model, the fixed effects model, and the random effects model, we compare them by choosing the preferred model using the following statistical tests:

a. Fisher test

Through the table5, we note that the value of (Cross-section F) is 88.97 and the probability value is 0.0000 and it is less than 5%. Therefore, we reject the null hypothesis and accept the alternative hypothesis, so fixed effects model is the best.

Table5: «Fisher te	st results»
--------------------	-------------

Effects test	statistic	d.f	prob
Cross-section F	88,97	(23, 137)	0,0000

source: stata 16 output

b. Breusch – Pagan test

The test results are shown in the following table

Table6: « Breusch – Pagan test results »

Effects test	Chibar2(01)	Prob> chibar2
Cross-section	298,23	0,0000

source: stata 16 output(appendice 02)

Through the above table, we notice that the value of (Chibar2 (01)) is 298.23 and the probability value is equal to 0.0000 which is less than 5%. Therefore, we reject the null hypothesis and accept the alternative hypothesis, so the FEM is the best .

c. Hausman test

the test results are shown in the following table

Table7: « Hausman test results »

Test: H ₀ : difference in coefficients not systematic	
Chi2(7)= 353,99	
prob>chi2=	0.0000

source: stata 16 (Appendice 03)

The results of Hausman test indicate that it is statistically significant at the level of 0.05, where as the probability value of the test is (0.0000). Therefore, we reject the null hypothesis, and we accept the alternative hypothesis indicating that the fixed effects model is the appropriate model for our study of the ordinary shares financing.

2.2. Estimate the second model

The results of estimation show through the table follow:

Table8: «results of estimate the panel models»				
Period: 2011-2018	N=24 T=	= 7 total pa	nel views= 168	
Explanatory	Pooled regression	Fixed Effects	Random Effects	
variables	model(PRM)	Model(FEM)	Model (REM)	
Constante	-8,180957	1,965999	-6,822939	
LFM	0,4274279	-0,2748374	-0,3980132	
FC	0,1416123	0,0657217	0,0817438	
NCF	-0,1004717	-0,0986702	-0,0383233	
SIZE	0,7845391	-0,2558975	0,6510683	
STRA	0,0092679	-0,000275	0,0042684	
SOLV	-0,0191942	0,0088722	0,0070573	
ROE	0,0000952	0,0046944	0,0028416	
Adjusted R- squared	0,5541	0,8920	0,5508	
F- statistic	30,64	8,63	41,03	
Prob (F- statistic)	0,0000	0,0000	0,0000	

source: Stata16 Output (Appendice 04)

After estimating the three models: the pooled regression model, the fixed effects model, and the random effects model, we compare them by choosing the preferred model using the following statistical tests:

a. Fisher test

Through the table below, we note that the value of (Cross-section F) is 8,25 and the probability value is equal to 0.0000 and it is less than 5%. Therefore, we reject the null hypothesis and accept the alternative hypothesis, so the fixed effects model is the best.

Table 7. «Fisher test results»				
Effects test	statistic	d.f	prob	
Cross-section F	8,25	(23, 137)	0,0000	

TableO. "Fisher test regultes

source: stata 16 output

b. Breusch – Pagan test

The test results are shown in the following table

Table10: « Breusch – Pagan test results »

Effects test	Chibar2(01)	Prob> chibar2
Cross-section	71,72	0,0000

source: stata 16 output(appendice 05)

Through the above table, we notice that the value of (Chibar2 (01)) is 71,72 and the probability value is equal to 0.0000 which is less than 5%. Therefore, we reject the null hypothesis and accept the alternative hypothesis, so the fixed effects model is the best also.

c. Hausman test

the test results are shown in the following table

Table11: « Hausman test results »

Test: H ₀ : difference in coefficients not systematic			
Chi2(7)= 66,11			
prob>chi2=	0.0000		

source: stata 16 (Appendice 06)

The results of Hausman test indicate that it is statistically significant at the level of 0.05, where as the probability value of the test is (0.0000). Therefore, we reject the null hypothesis, and we accept the alternative hypothesis indicating that the fixed effects model is the appropriate model for our study of the long term loans financing.

2.3. Estimate the third model

The results of estimation show through the table follow:

|--|

Period: 2011-2018	N=24 T=	= 7 total pa	anel views= 168
Explanatory	Pooled regression	Fixed Effects	Random Effects
variables	model(PRM)	Model(FEM)	Model (REM)
Constante	-11,8751	-3,45723	-9,972008
LFM	0,3468542	-0,2143262	-0,3065587
FC	-0,0669735	0,0230587	-0,0000696
NCF	0,078347	-0,2514267	0,0275307
SIZE	1,374474	0,7872739	1,237939
STRA	0,0023689	-0,0155337	-0,0061436
SOLV	0,0140918	-0,0199971	-0,0029509
ROE	0,0078758	0,0032744	0,0008864
Adjusted R- squared	0,5264	0,8569	0,6979
F- statistic	64,33	8,61	95,11
Prob (F- statistic)	0,0000	0,0000	0,0000

source: Stata16 Output (Appendice 07)

After estimating the three models: the pooled regression model, the fixed effects model, and the random effects model, we compare them by choosing the preferred model using the following statistical tests:

a. Fisher test

Through the table below, we note that the value of (Cross-sectionF) is 10,10 and the probability value is equal to 0.0000 and it is less than 5%. Therefore, we reject the null hypothesis and accept the alternative hypothesis, so the fixed effects model is the best.

Tuble15: «Tisher test results»						
Effects test	statistic	d.f	prob			
Cross-section F	10,10	(23, 137)	0,0000			
source: stata 16 output						

Table13: «Fisher test results»

b. Breusch – Pagan test

The test results are shown in the following table

Table14: « Breusch – Pagan test results »

Effects test	Chibar2(01)	Prob> chibar2
Cross-section	93,73	0,0000

source: stata 16 output(appendice 08)

Through the above table, we notice that the value of (Chibar2 (01)) is 93,73 and the probability value is equal to 0.0000 which is less than 5%. Therefore, we reject the null hypothesis and accept the alternative hypothesis, so the fixed effects model is the best also.

c. Hausman test

the test results are shown in the following table:

Table15:	« Hausman	test	results	»
----------	-----------	------	---------	----------

Test: H ₀ : difference in coefficients not systematic				
Chi2(7)= 86,47				
prob>chi2=	0.0000			

source: stata 16 (Appendice 09)

The results of Hausman test indicate that it is statistically significant at the level of 0.05, where as the probability value of the test is (0.0000). Therefore, we reject the null hypothesis, and we accept the alternative hypothesis indicating that the fixed effects model is the appropriate for our study of the retained earnings financing.

3. statistical interpretation of fixed effects model results

Based on the comparison test between three models using Hausman test, the Fisher test and the Breusch - Pagan test, the fixed effects model is the appropriate model, and therefore the results can be interpreted as follows:

3.1. testing the statistical significance for parameters estimated(student test)

we noted through Appendices (01, 04, 07)that all the probability values of the independent variable(liquidity of financial market) in each of the three models it is less than the level of significance 5%(first model:0,008, second model: 0,040, third model: 0,001), and also for the control variables are less than 5%, it has a statistical significance. so there is a statistically significant relationship for these variables with dependent variable(ordinary shares financing, long term loans financing, retained earning financing).

3.2. analyzing R-Squared

we noted through Appendices (01, 04, 07) the value of R-Squared was 0,8310 for the first model, and 0,8920 for the second model, and 0,8569 for the third model. that is meaning the independent variables and control variables contribute to the interpretation of 83,10% of the ordinary shares financing, 89,20% of the long term loans financing, 85,69% of the retained earning financing. while the remaining ratios are explained by other variables that are not included in the model.

3.3. testing the quality of models

through the Appendices (01, 04, 07) the probability values for three models equal 0,0000, it is less than the significance level 5%. Thus, the estimated models have

significant statistical in their entirety at a level of significance 0.05, which allows us to say that the models have a statistical significance, i.e all the parameters of the model as a group have a fundamental impact on the dependent variable. in other hand the value of correlation coefficient for the residuals of the estimated models with explanatory variables equal approximately to zero(0,0006 for first model. 0,0004 for second model. 0,0008 for third model). This means that the hypothesis of independence between the residuals and the explanatory variables is realized, which confirms that there is no problem of self-correlation between residuals and the explanatory variables, so the models are statistically acceptable.

4. Results and testing hypotheses

testing first hypothesis

The results obtained through estimating the fixed effects model indicate that the liquidity of the financial market positively affect the value of the ordinary shares financing, as the value of its valuation reached 0.4782271, meaning that every 1% change in the liquidity of the financial market leads to an increase in the value of the ordinary shares financing by 47.82%, this affect is significant(sig=0,008) which means that the financial market liquidity leads to companies directing to finance through ordinary shares. Accordingly, it can be said that the first hypothesis has been confirmed.

testing second hypothesis

The results obtained through estimating the fixed effects model also indicate that the liquidity of the financial market negatively affect long-term loans, with an estimate value of -0.2748374 meaning that every decrease 1% in financial market liquidity leads to an increase in long-term loans by 27.48%, this affect is significant(sig=0,040) which means that a decrease The liquidity of the Kuwait financial market leads enterprises to direct financing through long-term loans, and accordingly it can be said that the second hypothesis has been confirmed.

testing third hypothesis

It is also possible to observe the results obtained through estimating the fixed effects model that the liquidity of the financial market negatively affect the retained earnings, as its value reached -0.2143262 meaning that every decrease 1% in the liquidity of the financial market leads to financing with retained earnings by 21.43%, this affect is significant(sig= 0,001) which means that a decrease The liquidity of the Kuwait financial market leads enterprises to direct financing through retained earnings, and accordingly it can be said that the third hypothesis has been confirmed.

Conclusion :

the financial markets liquidity are a feature of efficient markets and the liquidity financial markets plays a major role in activating economy through the financing opportunities that they provide to economic enterprises, as it reflects the dynamics of enterprises through its financial tools circulating in the market. through our treatment of the relationship between financial market liquidity and financing decision reached the following results:

- By studying all the image variables, they are statistically significant independently and positively affect the dependent variables that make up the financing decision. In other words, the three variables differ from one company to another. This is due to other reasons, not caused by the liquidity of the Kuwait financial market, and this is what was obtained from the determination coefficient.

- The liquidity of the financial market has a strong impact on the dependent variable represented in financing by ordinary shares, where the ratio of the determination coefficient reached 83,10%, i.e. enterprises resort to financing through ordinary shares due to the increase in liquidity of the financial market.

- The liquidity of the financial market has a strong adverse effect on the dependent variable represented in financing through long-term loans, where the ratio of the determination coefficient reached 89,20%, that is, enterprises resort to financing through long-term loans due to a decrease in the liquidity of the financial market.

- The liquidity of the financial market has a strong adverse effect on the dependent variable represented in financing through retained earnings, as the ratio of the determination coefficient reached 85,69%, i.e. companies resort to financing through retained earnings, due to a decrease in the liquidity of the financial market.

Bibliographic References :

- Alain, P. (2011). économétrie des donnée de panel théorie et applications. Paris.
- Andreas R, D., Daniel, F., Kamil, P., & Alexander, S. (2018). What are the Real Effects of Financial Market Liquidity? *Discussion paper*, *34*, 1-51. Deutsche Bundesbank.
- Ayed, T. m., & Mohamed Hamdane, A. (2014). Liquidity of financial markets and its impact on share return. *Managment and economic science journal*, 20 (76).
- Carley, G. (2012). *Currency trading in the forex and futures markets*. new jersey: FT Press, upper suddle.
- Elghathi abdellah, i. a. (2016). The effect of financing strategy decisions in jordan industrial companies on ordinary share dividend. *journal of managment and economic sciences* (15).
- Erich H.(2001). *Analysis tools and techniques: A guide for managers*. Mcgraw-Hill.
- Frank j, F. (2009). *Finance capital markets, Financial management and Investment management.* new jersey: John wiley and sonc, inc, hoboken.

- Imane abdel muttalib, h. e. (2011). Indicators of measuring the liquidity of the stock market and its impact on economic growth. *economic and managment review*, 17 (23), 117-129.
- IOSCO. (2007). *factors influancing liquidity in emerging markets*. report of the IOSCO emerging market commitee.
- Mariana, K. (2009). The Impact of Financial Market Liquidity on Corporate Finance Decisions. *Master these*, 1-42. central european university, Hungary.
- Noori, M., & Khatibi, S. (2013). The impact of liquidity and transprency in the financial markets : A case study in tehran stock exchange. *european online journal of natural sciences*, 12 (3).
- PWC. (2015). Global financial markets liquidity study.
- Tung lam, D., Hai Ly, H., Chi Dzung, L., Thanh. T & Xuan, V. (2019). Equity Liquidity and Capital Structure. *Cogent economics and finance journal*, 7 (1), 1-20.
- William H, G. (2002). econometric analysis. new york university.

Appendices

Appendice1: «results of estimate the panel models for first model»

Source	55	df	MS	Numb	er of obs	= 168
+-				F(7,	160)	- 93.97
Model	28.6279581	7	8.375422	58 Prob) > F	= 0.0000
Residual	44,2611071	160	.0891319	19 R-so	uared	= 0.5043
				Adi	R-squared	= 0.4958
Total	72 8898652	167	4364614	58 Root	MSE	- 29859
focar j	72.0090052	107	.4504014	56 KOOL	, nac	2905
OSF	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval
LEM 1	1280504	0057305	1 34	0 183	- 0610356	317126/
EC.	0202147	.03373333	1.04	0.105	0010230	010510
P.C.	0205147	.0201702	-1.01	0.515	0001409	.019519:
NCF	.2268198	.0376164	6.03	0.080	.152531	. 3011080
SIZE	.7376242	.0427741	17.24	0.100	.6531496	.8220988
STRA	.0067314	.0012622	5.33	0.160	.0042388	.0092241
SOLV	.0346689	.0086786	3.99	0.089	.0175294	.051808
ROE	0080314	.0023762	-3.38	0.071	0127241	0033386
_cons	-6.955786	.5662872	-12.28	0.051	-8.074148	-5.837429
Fixed-effect	s (within) reg	ression		Number of	fobs =	168
Fixed-effect Group variab	s (within) reg lei indv	ression		Number of Number of	f obs = f groups =	168 24
Fixed-effect Group variab R-sq: within	s (within) reg le: indv = 8.7138	ression		Number of Number of Obs per j	f obs = f groups = group: =in =	168 24 7
Fixed-effect Group variab R-sq: within between	s (within) reg le: indv = 8.7138 = 8.7688	ression		Number of Number of Obs per (f obs = f groups = group: =In = avg =	168 24 7 7.8
Fixed-effect Group variab R-sq: within between overall	s (within) reg lei indv = 0.7130 = 0.7688 = 0.8510	ression		Number of Number of Obs per j	f obs = f groups = group: sin = avg = max =	168 24 7 7.8 7
Fixed-effect Group variab R-sq: within between overall	s (within) reg le: indv = 0.7130 = 0.7688 = 0.8310	ression		Number of Number of Obs per j	fobs = fgroups = group: sin = avg = max =	168 24 7 7.8 7
Fixed-effect Group variab R-sq: within between overall corr(u_1, Xb	s (within) reg lei indv = 0.7130 = 0.7658 = 0.6510) = 0.0006	ression		Number of Number of Obs per (Prob > F	fobs = fgroups = group: min = avg = max = =	168 24 7 7.e 7 5.30 8.0000
Fixed-effect Group variab R-sq: within between overall corr(u_1, Xb	s (within) reg lei indv = 8.7138 = 8.7658 = 8.6518) = 8.8086	ression		Number of Number of Obs per (7(7,137) Prob > F	fobs = fgroups = group: min = avg = max = = =	168 24 7 7.e 7 5.38 8.0000
Fixed-effect Group variab R-sq: within between dverall corr(u_1, Xb 	s (within) reg lei indv - 0.7130 - 0.7658 - 0.7658 - 0.8510) = 0.0006	ression Std. Err.	ŧ	Number of Number of Obs per (Prob > F P> t	f obs = f groups = group1 min = avg = max = = = [95% Conf.	168 24 7.8 7 5.38 8.0000 Interval]
Fixed-effect Group variab R-sq: within between overall corr(u_i, Xb	s (within) reg lei indv - 0.7130 - 0.7688 - 0.7697 - 0.7697 - 0.7677 - 0.7677 - 0.7677 - 0.7677 - 0.7677 - 0.7677 - 0.7677 - 0.7677 - 0.7677 - 0.7777 - 0.7777 - 0.7777 - 0.7777 - 0.7777 - 0.77777 - 0.77777 - 0.777777 - 0.777777 - 0.777777777777777777777777777777777777	ression Std. Err.	tt	Number of Number of Obs per j Prob > F P>[t]	f obs = f groups = group! sin = avg = max =	168 24 7 7.8 7 5.38 8.0000 Interval]
Fixed-effect Group variab R-sq: within between overall corr(u_1, Xb 055	s (within) reg le: indv = 8.7138 = 8.7688 = 8.8510) = 0.0006 Coef. .4762221	std. Err. .0260251	t 1.78	Number of Number of Obs per (Pr(7,137) Prob > F P>[t] e.ees	f obs = f groups = group: min = wyg = max = [95% Conf. 0854209	168 24 7 7.8 7 5.38 8.0000 Interval] .1010052
Fixed-effect Group variab R-sq: within between overall corr(u_1, Xb 	s (within) reg lei indv = 0.7130 = 0.7650 = 0.8510) = 0.0006 Coef. .4702271 .0044804	std. Err. .0200251 .0072641	t 1.78 0.62	Number of Number of Obs per (Prob > F P>[t] 0.008 0.038	f obs = f groups = group: = avg = = = = = [95% Conf. 0054109 0094759	168 24 7 7.8 7 5.38 8.0000 Interval] .182652 .018528
Fixed-effect Group variab R-sq: within between overall corr(u_1, Xb 	s (within) reg lei indv = 0.7130 = 0.7688 = 0.8510) = 0.0006 	std. Err. .0260251 .0305453 .0535453	t 1.78 0.62 0.72	Number of Number of Obs per ; Prob > F Polt; 0.008 0.035 0.005	f obs = f groups = group: = wax = = = [95% Conf. 0054109 000358	168 24 7 7.8 7 5.30 8.0000 Interval] .1010652 .018528 .1035055
Fixed-effect Group variab R-sq: within between overall corr(u_1, Xb 	s (within) reg le: indv = 0.7130 = 0.7658 = 0.6510) = 0.0006 Coef.	std. Err. .0260251 .0072643 .0552876	t 1.78 0.62 0.72 1.95	Number of Number of Obs per (Prob > F P>[t] 0.008 0.005 0.005 0.005	f obs = f groups = group: min = wyg = max = [95% Conf. 0054109 0040358 0040358	168 24 7 7.8 7 5.38 8.0000 Interval] .1810652 .018528 .1836956 .215787 .00555
Fixed-effect Group variab H-sq: within between overall corr(u_1, Xb 	s (within) reg lei indv = 0.7130 = 0.7688 = 0.7688 = 0.8310) = 0.0006 . 4782271 .0044854 .027549 1075378 .0044854 .027549	std. Err. .0200251 .0305455 .055254 .055254 .055254 .055254 .055255	t 1.78 0.62 0.72 1.95 4.04	Number of Number of Obs per (7(7,137) Prob > F P> t 0.008 0.035 0.003 0.004	f obs = f groups = group: = win = wax = = = : : : : : : : : : : : : : : : : :	168 24 7 7.0 7 5.30 8.0000 8.0000 101052 .018528 .1030956 .216707 .00655622 201655622
Fixed-effect Group variab R-sq: within betwaren overall corr(u_i, Xb 	s (within) reg le: indv = 0.7130 = 0.7688 = 0.8510) = 0.0006 Coef.	std. Err. Std. Err. .0260251 .0305455 .06109 .00109 .000109	t 1.78 0.62 0.72 1.95 4.04 2.93 0.60	Number of Number of Obs per (Prob > F P>[t] 0.008 0.035 0.005 0.000 0.004 0.041	f obs = f groups = group: =uin = = wax = = = [95% Conf. 0894759 0894759 0894759 0894759 0894759 0894759 0894759 0894759 0946758 0946759	168 24 7 7 5.30 8.0000 Interval] .1010652 .018528 .1030956 .216707 .0065522 .0165522 .0165522
<pre>/fixed-effect Group variab n-sq: within between overall corr(u_1, Xb</pre>	s (within) reg le: indv = 0.7130 = 0.7658 = 0.6510) = 0.0006 . Coef. 	std. Err. .0260251 .0072643 .0552876 .00109 .003537 .0090483 .5562926	t 1.78 0.62 0.72 1.95 4.64 2.93 -0.60 0.01	Number of Number of Obs per (7(7,137) Prob > F P>[t] 0.008 0.005 0.005 0.003 0.004 0.004 0.004	f obs = f groups = group: min = wyg = wax = = [95% Conf. .00054109 .0094759 .0046313 .0016313 .0016313 .0016313 .001568 .0031568 .0031568	168 24 7 7.0 7 5.30 8.0000 101crval] .1010652 .018858 .1030656 .216707 .00655622 .01545602 .0055622 .0164602 .0055622
Fixed-effect Group variab R-sq: within between overall corr(u_1, Xb 	s (within) reg lei indv = 0.7130 = 0.7688 = 0.8510) = 0.0006 Coef. .0044834 .0275349 .0044834 .005722 .0044854 .0095722 .004572 .004572	std. Err. .0260251 .007264 .007264 .00109 .00109 .003537 .0009483 .5250276	t 0.62 0.72 1.95 4.04 2.93 -0.60 -0.01	Number of Number of Obs per (Prob > F P>[t] 0.008 0.001 0.005 0.004 0.004 0.004	f obs = f groups = group: = win = wax = = = [95% Conf. -0054109 -0060358 -0060358 -0060313 .0022515 .0031968 -0024473 -002515 .0031968 -0024473 -0024475 -0024475 -0024475 -0024475 -0024475 -0024675 -0024675 -00	168 24 7 7.e 7 5.30 8.0000 1.010052 .018528 .1030056 .216707 .0065622 .0164562 .0065622 .0164562 .0055622 .0164562 .0055622 .0165622 .0165622 .01031 .0205522 .01031 .0205522 .01031 .020552 .0205552 .0205552 .02055552 .0205555555555
Fixed-effect Group variab R-sq: within betwaren overall corr(u_1, Xb 05F 	s (within) reg le: indv = 0.7130 = 0.7688 = 0.8510) = 0.0006 Coef. 	5td. Err. 90209251 9012643 90552876 90109 903537 9099483 5250276	t 1.78 0.62 0.72 1.95 4.04 2.93 -0.60 -0.01	Number of Number of Obs per (Prob > F P>[t] 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.004	f obs = f groups = group: = = = = = = = = = = = = = = = = = = =	168 24 7 7 5.30 8.0000 Interval] .1010652 .018528 .018528 .018528 .018528 .018528 .018528 .018528 .018528 .0185652 .0185652 .016707 .016705 .005705 .016705 .016705 .016705 .016705 .016705 .016705 .016705 .016705 .016705 .016705 .016705 .016705 .00555 .016705 .00705 .016705 .00705 .00705 .00705 .0070505 .0070505 .00705 .00705
<pre>/fixed-effect Group variab R-sq: within between overall corr(u_1, Xb</pre>	s (within) reg lei indv = 0.7130 = 0.7628 = 0.7628 = 0.8310) = 0.0006 (Coef. 4782271 .0044854 .027549 1075376 .0044854 .027549 .0044854 .027549 .0045722 .005505 .0005722 .565505 .005592	std. Err. .0200251 .0072641 .03054576 .0552876 .06109 .003537 .0009483 .5250276	t 1.78 0.62 0.72 1.95 4.04 2.93 -0.60 -0.01	Number of Number of Obs per (7(7,137) Prob > F P>[t] 0.868 0.803 0.805 0.805 0.805 0.804 0.647 0.647 0.644	f obs = f groups = group: = win = wax = = = [95% Conf. 0804109 08041000 08041000 08041000 080410000000000000000000000000000000000	168 24 7 7,8 7 5,30 8,0000 1010052 .018528 .1030056 .216707 .0065522 .0164562 .216707 .0055622 .0164662 .16707 .0055622 .0164662 .16707
Fixed-effect Group variab R-sq: within betwaren overall corr(u_i, Xb 	s (within) reg lei indv = 0.7130 = 0.7688 = 0.8510) = 0.0006 Coef. .0044804 .0275849 .0044804 .0275849 .0044804 .0093285 .0005722 .00032801 .555505 .000022801	std. Err. 5td. Err. .0200251 .0375453 .0552876 .00109 .0003537 .0009435 .5250276	t 1.78 0.62 0.72 1.95 4.64 2.93 0.66 -0.01	Number of Number of Obs per (Prob > F P>[t] 0.008 0.035 0.005 0.004 0.047 0.044 0.044	f obs = f groups = group: = win = = wax = = = [95% Conf. 0054109 0406358	168 24 7 7.8 7 5.30 8.0000 Interval] .1010052 .018538 .1030056 .216707 .0065522 .0164602 .01674602 .0167425 1.03425

Random-effects GLS regression Number of obs 168 Group variable: indv Number of groups = 24 R-sq: Obs per group: within = 0.1877 min = 7 between = 0.7984 avg = 7.0 overall = 0.7690 max = 7 Wald chi2(7) = 66.62 = corr(u_i, X) = 0 (assumed) Prob > chi2 0.0000 _____ Coef. Std. Err. OSF | z P>|z| [95% Conf. Interval] ----------LEM | .712349 .0303105 2.35 0.019 .0118273 .1306424 .04093 .0832049 0.50 0.618 .0747412 .0405266 1.84 0.065 .263544 .0552788 4.77 0.000 .046535 .0011718 3.97 0.000 .0116705 .0037402 3.12 0.002 -.0008343 .0010547 -0.79 0.429 FC | 0.618 -.0119884 0.065 -.0046894 0.000 .1551995 0.000 .0023569 0.002 .0043399 .0201744 .1541718 NCF | .3718886 SIZE | STRA |
 SOLV
 .0116705
 .0037402
 3.1.7
 0.0002
 .0043399

 ROE
 -.0008343
 .0010547
 -0.79
 0.429
 -.0029016

 _cons
 -1.733018
 .5264629
 -3.29
 0.001
 -2.764867
 .0190011 .0012329 -.70117 -----_____ ---------sigma_u .29308728 .08082091 sigma_e | rho .92933175 (fraction of variance due to u_i)

Appendice 2: « Breusch – Pagan test results for first model »

Breusch and Pagan Lagrangian multiplier test for random effects

Appendice 3: « Hausman test results for first model »

i.	(b)	(8)	(b-B)	<pre>sqrt(diag(V_b-V_B))</pre>
	fe	re	Difference	S.E.
LFM	.478227	.712349	234122	
PC	.0044884	.804893	.0003954	
NCF	.0275849	.0747412	0471563	
SIZE	.1075378	.263544	1568862	
STRA	.0044068	.0046535	0082467	
SOLV	.0098285	.0116705	001842	¥
RDE	+.0005722	0008343	.0082621	
B -	b inconsistent	= consistent under Ha, eff	under Ho and Hu icient under Ho	a; obtained from xtre o; obtained from xtre
Test: Ho:	difference i	n coefficients	not systematic	¢.

ch12(7) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 353.99 Probach12 = 0.0880

Appendice 4: «results of estimate the panel models for second model»

Source	55	df	MS	Num	ber of d	obs	= 16
				F(7	, 160)		= 30.6
Model	83.1923008	7	11.88461	44 Pro	6 > F		= 0.000
Residual	62,0565773	160	.3878536	08 R-5	quared		= 0.572
Total	146 348878	167	8607537	Adj	+ MEE	rea	= 0.554
locar	143,240070	107	.009/33/	01 K00	C HSE		0227
LTDE	Conf	End Eng		ns l+1			f Totomul
LIDE	coer.	Std. Err.	t	PSICI	[aov	e con	r. Interval
LEM	4274279	1997139	2.14	0.034	.033	30127	821843
FC	.1416123	.0420754	3,37	0.001	.058	35176	.224707
NCF	1004717	.0784684	-1.28	0.202	255	54392	.054495
SIZE	.7845391	.0892273	8.79	0.000	. 608	33239	.960754
STRA	.0092679	.0026329	3.52	0.001	.004	10682	.014467
SOLV	0191942	.0181037	-1.06	0.291	054	19473	.016558
ROE	.0000952	.0049567	0.02	0.985	009	96939	.009884
_cons	-8.180957	1.181283	-6.93	0.000	-10.5	51388	-5.84803
Elved offer	te (within) cer	residen		Rueber o	f obs	120	168
Group varia	ble: indv			Number o	f groups		24
				1412701821	din di		
H-SQ:	- 8 7700			oos per	Ecoup:	121	-
hatten	= 0.7703				8117 atra		7.8
overal	1 = 0.8920				100		7
					200		555
				(7,137)			8.63
corr(u_1, X	(b) = 0.0004			Prob > F		-	0.0000
LTD	H Coef.	Std. Err.	ŧ .	P> t	[95% C	onf. I	nterval]
17	M 1 2748374	1451721	1.89	8.649	51223	м	5619852
	C .0657217	.0391661	1.68	0.016	011720	15	.1431699
NC	F0986702	.2078246	-0.47	0.036	-,589629	21	.3122887
512	E2558975	.2976625	-0.86	0.031	844584	46	,3327095
STR	A0000275	.0058767	-0,00	0.026	011640	53	.0115934
501	.V .00888722	.0180821	0.49	0.024	-,026883	39	.0446284
RO	E .0046944	.0051128	0.92	0.001	+++++++++++++++++++++++++++++++++++++++	58	,8148846
	15 1.965999	2,83079	0,69	8.004	-3,63169	93	7,563691

signa	e .43576184						
rh	.83643114	(fraction	of varian	ice due to	u 15		
*********	*************						*******
F test that	: all u_1=0: F(2	23, 137) = 8	.25		Prot	9 } F	= 9.0000
Random-effec	ts GLS regress	sion		Number	of obs		168
Group variabl	le: indv			Number	of group	5 *	24
R-sq:				Obs per	group:		
within	= 0.0258					in -	7
between	- 0.7090					vg =	7.0
overall	= 0.5508					ах =	7
				risht als	2 2 2 2 2 2		
<pre>corr(u_i, X)</pre>	= 0 (assumed	()		Prob >	chi2		0.0000
LTDF	Coef.	Std. trr.		P>1z]	[95%	Conf.	Interval]

LFM	5988132	.1491128	2.0/	0.030	5057	3/0	1507002
PL NCE	- 0383222	1315508	-8.29	0.030	- 2941	758	2195292
SIZE	.6518683	.1564828	4.16	8,888	3445	243	.9576122
STRA	.8942684	.0841667	1.02	0,386	-,0038	973	.0124341
SOLV	.0070573	.0171289	0.41	0.688	0265	148	.0406293
ROE	.0028416	.0647469	0.60	0.549	0864	621	.0121453
cons	-6.822939	1.5152	-4.58	0.000	-9,792	676	-3.653203
	+						
sigma_u	.43925321						
signa_e	.43576184						
rhó	.50399	(Traction	of varia	nce due t	a u_1)		

Appendice5: « Breusch – Pagan test results for second model »

reusch	and Pap	gan Lagran	81	an multiplier	tes	t for random e	effects
	LTDF[in	ndv,t] = X	ь	+ u[indv] + e[ind	v,t]	
	Estimat	ted result	51				
			1	Var	=d	= aqrt(Var)	
		*******	-+				
		LTDF	1	.8697538		,9326059	
			1	.1898884		.4357618	
		u	1	.1929434		.4392532	
	Test:	Var(u) =	.0				
		220200000000000000000000000000000000000		chibar2(01)	100	71.72	
				Prob > chibar2		0.0000	

Appendice 6: « Hausman test results for second model »

Te re Difference S.E. LPM 2748374 3980132 1231758 . FC .0657217 .0817438 0160221 . NCH 0980702 03303233 0609469 .1808822 SIZE 2558975 .6510663 9069658 .2532609 STRA 0600275 .0042059 .0041447 SOLV .0068722 .0070573 .001815 .005734 ROE .00469444 .0028416 .0018528 .0018994	e S.E.
LPM 2748374 3980132 1231758 . FC .0657217 .0817438 .0160221 . MCF 0986702 .0812438 .0160221 . SITE 2558975 .6518683 .9069658 .2532609 STRA 0608275 .00424050 .0041447 SOLV .00608722 .007573 .001815 .0075734 RDE .00464544 .0022416 .0018152 .0018994	3
LPM274837499801321233758 . FC .0657217 .08174380160221 . NCF098070203832330603469 .1608822 . SIZE2558975 .65106839069658 .2532609 . STRA08001275 .06426840642059 .0041447 . SOLV .0608722 .0070573 .001815 .0057934	
FC .0657217 .0817438 0160221 . NCP 0980702 0383233 0609469 .1608822 SIZE 2558975 .6518663 9969658 .2532609 STRA 0608275 .0642684 06042059 .0641447 SOLV .0688722 .0070573 .001815 .0057934 ROE .0646944 .0628416 .0618528 .0018994	
NCP 0986702 0383233 0603469 .1608822 SIZE 2558975 .6510683 9969658 .2532609 STRA 0008275 .0042684 0042959 .0041447 SOLV .0080722 .0070573 .001815 .0057934 ROE .0046944 .0028416 .0018528 .0018994	1
SIZE 2558975 .6519683 969658 .2532609 STRA 06081275 .0842684 0642959 .0841447 SOLV .0608722 .0070573 .001815 .0057934 ROE .0846944 .0828416 .0818528 .0018994	9 .1688822
STRA 0000275 .0042684 0042059 .0041447 SOLV .0000722 .0070573 .001815 .0057934 ROE .00469044 .0028416 .00181528 .0018994	8 , 2532609
SOLV .0088722 .0070573 .001815 .0057934 RDE .00445944 .0028416 .0018528 .0018994	.0841447
ROE .0846944 .0828416 .0818528 .0018994	.0057934
그렇게 가지 않는 것 같은 것 같	.0018994
b = consistent under Ho and	

Test: Ho: difference in coefficients not systematic

ch12(7) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 60.11 Proboch12 = 0.0008

Appendice 7: «results of estimate the panel models for third model»

(within) regression Number of ob-	Shanna - I	168
lei indv Number of gro	oups ,	- 24
Obs per group	P :	
= 0.7178	min +	- 7
= 0.7878	avg +	7.0
= 0.8569	max -	- 7
	10000000000	
) = 0.0002 Prob > F		e.eeee
Coef. Std. Err. t P>[t] [9:	5% Cont	f. Interval]
- 3143363 1336473 1.76 0.001 - 3	701380	4556661
0230507 0320272 0.70 0.0012	420526	0001600
- 2514267 1747196 -1.44 0.002 - 50	969228	.0940693
7872736 256247 3.15 0.002 -13	034378	1.38313
- 0155357 0040406 -3 14 0 002 - 0	25 3034	008264
- 0100071 0152018 -1 52 0 011 - 0	500576	0100633
0032744 0042984 0.76 0.044 - 04	052253	0117741
-3.45723 2.379865 -1.45 0.014 -8.1	163249	1.24879
.81354702		
.36634812		
.83140805 (fraction of variance due to u_i)	>	
	100000	79777272022
	the second se	
11 u_i=0: F(23, 137) = 10.10	Prob)	F = 0.0000
<pre>ill u_i=0: F(23, 137) = 10.10 cts GLS regression Number of obs</pre>	Prob)	168
ill u_i=0: F(23, 137) = 10.10 cts GLS regression Number of obs ble: indv Number of gro	prob ; = ups =	F = 0.0000 168 24
all u_i=0: F(23, 137) = 10.10 tts GLS regression Number of obs ble: indv Number of gro Obs and group	Prob) 	F = 0.0000 168 24
all u_i=0: F(23, 137) = 10.10 tts GLS regression ble: indv A orizi A orizi A orizi	Prob) 	F = 0.0000 168 24
11 u_1=0: F(23, 137) = 10.10 cts GLS regression Number of obs ble: indv Number of gro = 0.0677 Obs per group	min =	168 24 7
all u_i=0: F(23, 137) = 10.10 cts GLS regression Number of obs ble: indv Number of gro = 0.0677 Obs per group n = 0.7819 Obs per group	min = avg =	168 24 7 7.0
all u_i=0: F(23, 137) = 10.10 cts GLS regression Number of obs ble: indv Number of gro - 0.0677 Obs per group n = 0.7819 1 = 0.6979	min = avg = max =	168 24 7 7.0 7
11 u_1=0: F(23, 137) = 10.10 cts GLS regression Number of obs ble: indv Number of gro = 0.0677 Obs per group n = 0.7819 1 = 0.6979 Wald chi2(7) Wald chi2(7)	min - avg - max -	168 24 7 7.0 7 95.11
all u_i=0: F(23, 137) = 10.10 cts GLS regression Number of obs ble: indv Number of gro = 0.0677 Obs per group n = 0.7819 Nald chi2(7)) = 0 (assumed) Wald chi2(7)	min - avg - max -	24 168 24 7 7.0 7 95,11 0,0000
all u_i=0: F(23, 137) = 10.10 cts GLS regression Number of obs ble: indv Number of gro = 0.0677 Obs per group n = 0.7819 Vald chi2(7)) = 0 (assumed) Prob > ch12	min = max = max =	7 7.0 7 95.11 0.0000
all u_i=0: F(23, 137) = 10.10 cts GLS regression Number of obs ble: indv Number of gro = 0.0677 Obs per group n = 0.7819 Wald chi2(7) 1 = 0 (assumed) Prob > chi2	min - avg - max -	7 7.0 95.11 0.0000
all u_i=0: F(23, 137) = 10.10 cts GLS regression Number of obs ble: indv Number of gro = 0.0677 Obs per group n = 0.7819 Vald chi2(7) Prob > chi2 Prob > chi2 E Coef. Std. Err. z P> z [95]	min - avg - max -	7 7.0 7.0 95.11 0.0000
all u_i=0: F(23, 137) = 10.10 cts GLS regression Number of obs ble: indv Number of gro = 0.0677 Obs per group n = 0.7819 Number of cos 1 = 0.6979 Wald chi2(7)) = 0 (assumed) Prob > chi2 E Coef. Std. Err. z Ps z [05	Prob) = mups = i min = avg = max = = % Conf	<pre>6.0000 168 24 7 7.0 95.11 0.0000 . Interval]</pre>
11 u_1=0: F(23, 137) = 10.10 cts GLS regression Number of obs ble: indv Number of gro = 0.0677 Obs per group n = 0.7819 0bs per dots 1 = 0.6979 Wald chi2(7)) = 0 (assumed) Wald chi2(7) Frob > chi2 Prob > chi2 E Coef. Std. Err. z 3065587 .1255424 2.444 9.015 66	Prob) 	<pre>6.0000 168 24 7 7.0 7.0 95.11 0.0000 . Interval]</pre>
11 $u_1 = 0; F(23, 137) = 10.10$ cts GLS regression ble: indv Number of gro 0bs per group = 0.0677 0bs per group n = 0.7819 0bs 1 = 0.6979 Wald chi2(7) prob > chi2 Prob > chi2 E Coef. Std. Err. z 41 3065587 .1255424 2.44 0.998 060	Prob) = mups = n avg = max = = % Conf 53459	<pre>6.0000 168 24 7 7.0 95.11 0.0000 . Interval] .55206172 0652066</pre>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Prob) = mups = n avg = max = = 3% Conf 550021 53459 10019	<pre>6,0000 168 24 7 7.0 7.0 95.11 0.0000 . Interval] .5526172 0652066 .2566633</pre>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Prob) = uups = ii min = avg = max = = max = 50021 53459 100019 37581	<pre>6.0000 168 24 7 7.0 95.11 0.0000 . Interval] .5520172 .0652068 .2560633 1.51212</pre>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Prob : 	<pre>7 = 0.0000 168 24 7 7.0 7.0 95.11 0.0000 . Interval] .5226172 .06522666 .2560633 1.51212 .0010343</pre>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Prob) =	<pre>6.0000 168 24 7 7.0 95.11 0.0000 . Interval] .5526172 .0652066 .2560633 1.51212 .0010343 .0255881</pre>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Prob : = = = = = = = = = = = = =	<pre>F = 0.0000 168 24 7 7 7.0 95.11 0.0000 . Interval] .520172 .0052066 .2560633 1.51212 .0010343 .0255881 .0008108</pre>
hll u_i=0: $F(23, 137) = 10.10$ tts GLS regression ble: indv = 0.0677 n = 0.7819 1 = 0.6979 F(23, 137) = 10.10 Number of obs Number of gro Obs per group = 0.6677 n = 0.7819 1 = 0.6979 Wald chi2(7) Prob > chi2 E Coef. Std. Err. z P> z [95 M3065587 .1255424 2.44 0.01560 C0000696 0.9333049 -0.00 0.99866 F .0275307 .1166004 0.24 0.81320 E 1.237939 .1369068 8.85 0.006 .06 A0061436 .0036622 -1.68 0.09301 V0029509 .014561 -0.20 0.83903 E .0029509 .014561 -0.20 0.83903 E .00908864 .0940431 0.22 0.82600	Prob : 	<pre>> F = 0.0000 168 24 7 7.0 95.11 0.0000 . Interval] . 5526172 .0652066 .2560633 1.51212 .0010343 .0255881 .00088108 .7.336859</pre>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Prob : 	<pre>6.0000 168 24 7 7.0 7 95.11 0.0000 . Interval] .5526172 .0652066 .256063 1.51212 .0019343 .0255861 .0008108 -7.356859</pre>
hll u_i=0: $F(23, 137) = 10.10$ tts GLS regression ble: indv = 0.0677 n = 0.7819 1 = 0.6979 () = 0 (assumed) E Coef. Std. Frr. z Ps z [05 M3065587 .1255424 2.44 0.01560 C0000696 .0333049 -0.00 0.99866 C0000696 .0333049 -0.00 0.99866 C0000696 .0333049 -0.00 0.99866 C0000696 .0333049 -0.00 0.99866 C0000659 .0333049 -0.00 0.99866 C0000659 .0333049 -0.00 0.99866 C0000659 .0333049 -0.00 0.99866 C000659 .0333049 -0.00 0.99866 C0000659 .0333049 -0.00 0.99866 C000659 .0333049 -0.00 0.93869 E0008504 .0040431 0.22 0.83903 E0008864 .0040431 0.22 0.82600 U407667	Prob) 	<pre>F = 0.0000 168 24 7 7 7.0 95.11 0.0000 . Interval] .5220172 .001034 .2560633 1.51212 .001034 .0255881 .0008106 -7.336859</pre>
hll u_i=0: $F(23, 137) = 10.10$ tts GLS regression ble: indv = 0.0677 n = 0.7819 1 = 0.6979) = 0 (assumed) E Coef. Std. Err. z P> z [95 V3065587 .1255424 2.44 0.01560 C0000696 0.0333049 -0.00 0.99806 C0000696 0.033049 -0.00 0.99806 C0002599 .1156004 0.24 0.81320 E 1.237939 .1398908 8.85 0.000 .96 A0061436 .0036622 -1.68 0.09301 C0002599 .014561 -0.20 0.83903 E006864 .0040431 0.22 0.82609 S -9.972008 1.344488 -7.42 0.000 -12. 	Prob) ups = i min = avg = max = = 3% Conf 53459 100019 375814 33214 14898 700379 60716	<pre>6 .0000 168 24 7 7.0 95.11 0.0000 . Interval] .5526172 .0652066 .2566633 1.51212 .0010343 .0255831 .0255831 .0258381 .0008108 -7,336859</pre>
hll u_i=0: $F(23, 137) = 10.10$ tts GLS regression ble: indv = 0.0677 m = 0.7819 1 = 0.6979) = 0 (assumed) E Coef. Std. Err. z P> z [05 M3065587 .1255424 2.44 0.01560 C0000696 .033049 -0.00 0.99806 F .0275307 .1166004 0.24 0.81320 C000659 .033049 -0.00 0.99806 F .0275307 .1166004 0.24 0.81320 E Coef.436 0.083622 -1.66 0.09301 C000659 0.313649 -0.00 0.99805 F .0275307 .1166004 0.24 0.81320 E .237939 .1398908 8.85 0.000 .06 E .0275307 .1166004 0.24 0.83903 C0006564 0.040451 0.22 0.82600 S9072008 1.344488 -7.42 0.000 -12. U .407667 = .36634812 0 .5532984 (fraction of variance due to u i)	Prob) ups = iups = avg = max = avg = max = 3 % Conf 530521 53459 10019 337581 33214 14898 337581 14898 60716	<pre>r = 0.0000 168 24 7 7 7.0 95.11 0.0000 . Interval] .5220172 .00522066 .2560633 1.51212 .0010343 .0255881 .0008108 -7.336859</pre>

Source	55	df	MS	Num	ber of obs		168
*************				- F(7,	160)	*	64.33
Hodel	99.48626	7	19.9266886	Prob	> #		0.0000
Residual	89.558751	160	.30974219	6 R+54	uared	-	0.5378
+				- Adj	R-squared	*	0.5264
Total	189.845812	167	1,1328068	6 Root	MSE	•	.55654
R/E	Coef.	Std. Err.	t -	P>[t]	[95% Con	f. 1	Interval]
	3440543	4704725		A 154			
1.5H	13408592	.1/84/30	1.94	0.154	805014		10993224
FC	8669735	.0376886	+1.7B	8.877	1412389		.007284
NCF	.078347	.0701231	1.12	0.266	0681393		.2168332
SIZE	1.374474	.0797378	17.24	8,000	1.217		1.531948
STRA	.0023689	.0023529	1.01	8.316	0022778		.0070156
SOLV	.0148918	.0161784	8.87	8.385	0178589		,8468424
ROE	.0078758	.0044296	1.78	8.877	0008722		.0166237
cons	-11.6751	1.055651	-11.25	0.000	-13.95991		9.798294

Appendice 8: « Breusch – Pagan test results for third model »

Breusch and Pagan Lagrangian multiplier test for random effects

RE[indv,t] = Xb + u[indv] + e[indv,t]

Estimated results:	Var	sd	= sqrt(Var)
RE	1.132006		1.063958
=	.1342109		.3663481
u	.1661924		.407667
Test: Var(u) = 0			
	chibar2(01)		93.73
	Prob > chibar2		0,0000

Appendice 9: « Hausman test results for third model »

	Coeffi	cients		
	(b) fe	(8) re	(b-8) Difference	<pre>surt(disg(V_b-V_8)) S.E.</pre>
LEM	2143262	1065587	0922325	
FC	.8238587		.0231282	
NCF	-,2514267	.0275307	2789574	.1301203
SIZE	.7872739	1.237939	4586651	.2074948
STRA	0155337	0061436	0093981	.0033162
SOLV	8199971	0029589	-,0170463	.0843671
ROE	.0032744	.00055564	.002388	.0814592
B · Test: Ho:	inconsistent difference i chi2(7) =	<pre>b = consistent i under Ha, eff in coefficients (b-8)'[(V_b-V_ 86.47</pre>	under Ho and Ho ficient under Ho not systematic 0)^(-1)](b-0)	; obtained from xtre; ; obtained from xtre; ;
	ProD>ch12 =	e.8666		