Democratic and Popular Republic of Algeria Ministry of Higher Education and Scientific Research University of BECHAR

Printed from

Scientific Research

http://www2.univ-bechar.dz/jrs/

Monte Carlo simulation of the transport phenomena in Hg_{0.8}Cd_{0.2}Te: degeneracy case

N. Dahbi, M. Daoudi, A. Belghachi Laboratory of semiconductors devices physic (LPDS), POB 417 university of Bechar, Algeria. Corresponding author: <u>daoudimadz@yahoo.fr</u>

Received 12 January 2011; accepted 21 February 2011

Scientific Research

The Editor, on behalf of the Editorial Board and Reviewers, has great pleasure in presenting this number of the Journal of Scientific Research. This journal (ISSN 2170-1237) is a periodic and multidisciplinary journal, published by the University of Bechar. This journal is located at the interface of research journals, and the vulgarization journals in the field of scientific research. It publishes quality articles in the domain of basic and applied sciences, technologies and humanities sciences, where the main objective is to coordinate and disseminate scientific and technical information relating to various disciplines.

The research articles and the development must be original and contribute innovative, helping in the development of new and advanced technologies, like the studies that have concrete ideas which are of primary interest in mastering a contemporary scientific concepts. These articles can be written in Arabic, French or English. They will not be published in another journal or under review elsewhere. The target readership is composed especially of engineers and technicians, teachers, researchers, scholars, consultants, companies, university lab, teaching techniques and literary ... The journal is obtainable in electronic form, which is available worldwide on the Internet and can be accessed at the journal URL:

http://www2.univ-bechar.dz/jrs/.

Director of Journal Pr. BELGHACHI Abderrahmane

Editor in Chief Dr. HASNI Abdelhafid

Editorial Member

Mr. TERFAYA Nazihe Mr. BOUIDA Ahmed Mr. LATFAOUI Mohieddine Mr. OUAHABI Abdelhakim

Reviewers board of the Journal.

- Pr. KADRY SEIFEDINE (The American University in KUWAIT)
- Pr. RAZZAQ GHUMMAN Abdul (Al Qassim University KSA)
- Pr. PK. MD. MOTIUR RAHMAN (University of Dhaka Bangladesh) Pr. MAHMOOD GHAZAW Yousry (Al Qassim University KSA)
- Pr. KHENOUS Houari Boumediene (King Khalid University KSA)
- Pr. RAOUS Michel (Laboratory of Mechanic and Acoustic France)
- Pr. RATAN Y. Borse (M S G College Malegaon Camp India)
- Pr. LEBON Frédéric (University of Aix-Marseille 1 France)
- Pr. MONGI Ben Ouézdou (National Engineering School of Tunis)
- Pr. BOUKELIF Aoued (University of Sidi Bel Abbes Algeria)
- Pr. DJORDJEVICH Alexandar (University of Hong Kong)
- Pr. BENABBASSI Abdelhakem (University of Bechar Algeria)
- Pr. BOULARD Thierry (National Institute of Agronomic Research France)
- Pr. LUCA Varani (University of Montpellier France)
- Dr. FELLAH Zine El Abiddine Laboratory of Mechanic and Acoustic France)
- Dr. ZHEN Gao (University of Ontario Institute of Technology Canada) Dr. OUERDACHI Lahbassi (University of Annaba Algeria)
- Dr. HADJ ABDELKADER Hicham (IBISC University of Evry France)
- Dr. KARRAY M'HAMED ALI (National Engineering School of Tunis)
- Dr. ALLAL Mohammed Amine (University of Tlemcen Algeria)
- Dr. FOUCHAL Fazia (GEMH University of Limoges France)
- Dr. TORRES Jeremi (University of Montpellier 2 France)

Dr. GOVINDRAO DIGHAVKA Chandrakant (L. V. H. College of Panchavati India)

Dr. ABID Chérifa (Polytech' University of Aix-Marseille France)

- Dr. HAMMADI Fodil (University of Bechar Algeria)
- Dr. LABBACI Boudjemaa (University of Bechar Algeria)
- Dr. DJERMANE Mohammed (University of Bechar Algeria)
- Dr. BENSAFI Abd-El-Hamid (University of Tlemcem)

- Pr. BALBINOT Alexandre (Federal University of Rio Grande do Sul Brazil)
- Pr. TEHIRICHI Mohamed (University of Bechar Algeria)
- Pr. JAIN GOTAN (Materials Research Lab., A.C.S. College, Nandgaon India)
- Pr. SAIDANE Abdelkader (ENSET Oran Algeria)
- Pr. DI GIAMBERARDINO Paolo (University of Rome « La Sapienza » Italy)
- Pr. SENGOUGA Nouredine (University of Biskra Algeria)
- Pr. CHERITI Abdelkarim (University of Bechar Algeria)
- Pr. MEDALE Marc (University of Aix-Marseille France)
- Pr. HELMAOUI Abderrachid (University of Bechar Algeria)
- Pr. HAMOUINE Abdelmadjid (University of Bechar Algeria)
- Pr. DRAOUI Belkacem (University of Bechar Algeria)
- Pr. BELGHACHI Abderrahmane (University of Bechar Algeria)
- Pr. SHAILENDHRA Karthikeyan (AMRITA School of Engineering India)
- Pr. BURAK Barutcu (University of Istanbul Turkey)
- Dr. SELLAM Mebrouk (University of Bechar Algeria)
- Dr. ABDUL RAHIM Ruzairi (University Technology of Malaysia)
- Dr. BELBOUKHARI Nasser (University of Bechar Algeria)
- Dr. CHIKR EL MEZOUAR Zouaoui (University of Bechar Algeria)
- Dr. BENACHAIBA Chellali (University of Bechar Algeria)

Dr. KAMECHE Mohamed (Centre des Techniques Spatiales, Oran Algeria) Dr. MERAD Lotfi (Ecole Préparatoire en Sciences et Techniques Tlemcen Algeria)

- Dr. BASSOU Abdesselam (University of Bechar Algeria)
- Dr. ABOU-BEKR Nabil (Universit of Tlemcen Algeria)
- Dr. BOUNOUA Abdennacer (University of Sidi bel abbes Algeria)
- Dr. TAMALI Mohamed (University of Bechar Algeria)
- Dr. FAZALUL RAHIMAN Mohd Hafiz (University of Malaysia)
- Dr. ABDELAZIZ Yazid (University of Bechar Algeria)
- Dr. BERGA Abdelmadjid (University of Bechar Algeria)

Dr. SANJAY KHER Sanjay (Raja Ramanna Centre for Adavanced Technology INDIA)

Journal of Scientific Research

P.O.Box 417 route de Kenadsa 08000 Bechar - ALGERIA Tel: +213 (0) 49 81 90 24 Fax: +213 (0) 49 81 52 44 Editorial mail: <u>irs.bechar@gmail.com</u> Submission mail: <u>submission.bechar@gmail.com</u> Web: <u>http://www2.univ-bechar.dz/jrs/</u>

© Copyright Journal of Scientific Research 2011. University of Bechar - Algeria

Monte Carlo simulation of the transport phenomena in Hg_{0.8}Cd_{0.2}Te: degeneracy case

N. Dahbi, M. Daoudi, A. Belghachi

Laboratory of semiconductors devices physic (LPDS), POB 417 university of Bechar, Algeria. Corresponding author: <u>daoudimadz@yahoo.fr</u>

Abstract – The present work deals with the calculation of transport properties of $Hg_{0.8}Cd_{0.2}Te$ (MCT) semiconductor in degenerate case. Due to their energy-band structure, this material becomes degenerate at moderate doping densities, which are around 10^{15} cm⁻³, so that the usual Maxwell-Boltzmann approximation is inaccurate in the determination of transport parameters. This problem is faced by using Fermi-Dirac (F-D) statistics, and the non-parabolic behavior of the bands may be approximated by the Kane model. The Monte Carlo (MC) simulation is used here to determinate transport parameters: drift velocity, mean energy and drift mobility versus electric field and the doped densities. The obtained results are in good agreement with those extracted from literature.

Keywords: *H*g_{0.8}*Cd*_{0.2}*Te semiconductor, degeneracy case, transport parameters, Monte Carlo simulation.*

I. Introduction

Mercury Cadmium Tellurium (MCT-HgCdTe) has been proposed as a material with favourable properties for use in infrared photo-detectors, which represent a physical process with huge number of applications: night vision, civilian and medical imaging, etc. This refers to the properties of this semiconductor, i.e., small band gap, small electron effective mass, large non parabolic conduction band. The majority of MCTbased devices contain a cadmium fraction of x = 0.2which at temperature of 77K allows the photo-detection of the 8-14µm atmospheric window wavelengths. At this temperature MCT has a narrow band gap; it is about 0.1 eV, so it is easy to become degenerate from small electron densities. This latter feature is important in highly doped regions of infrared photo-detector where all the Coulombic scattering mechanisms are effectively screened and, furthermore, all scattering processes are depending directly on the position of the Fermi level [1]. The need for accurate characterization of MCT in degenerate case brought an enormous number of simulation methods. The most accurate kinetic description is given by the Monte Carlo (MC) method, because it can take into account explicitly both the energy band- structure and various scattering mechanisms of the studied material.

The purposes of this work are to use a precise approximation in order to calculate the Fermi level in a degenerate $Hg_{0.8}Cd_{0.2}Te$ at 77K with different doping concentration and as result to show the change in material parameters as the gap energy, effective mass and non parabolic factor. The Monte Carlo (MC) simulation is

performed in this work in order to calculate the transport parameters in $Hg_{0.8}Cd_{0.2}Te$ as drift velocity, mean energy and drift mobility for degenerate case at 77K. Hence, we developed our own model which can be easily used for our specific case.

II. Fermi energy in degeneracy case

Many of interest situation in semiconductor devices involve high concentrations of electrons, where degeneracy is expected to play an important role. HgCdTe material has a strong non-parabolicity factor ($\alpha = 11.4eV^{-1}$) and a narrow band gap, due to this, the degeneracy effects in MCT at 77 K occurs for relatively small electron density (n $\approx 10^{15}$ cm⁻³) [2]. Hence in this case, it is desirable to have an approximation of the Fermi integral in order to relate the Fermi energy by the carrier concentration in non-parabolic semiconductors [3, 4]. In degenerate semiconductors, all the levels under $E_F - 4K_BT$ are occupied and it is assumed that the energy gap in this case takes the following form [5]:

$$E_g = E_{g0} + \left(E_F - 4K_BT\right) \tag{1}$$

Where the non-degenerated energy band gap E_{g0} is a function of both, fraction molar of cadmium x and temperature lattes T, it is given by:

$$E_{g0} = -0.302 + 1.93x - 0.81x^{2} + 0.832x^{3} + 5.35 \times 10^{-4} (1 - 2x)T$$
(2)

This energy is getting in eV and the temperature T is given in Kelvin.

The reduced Fermi energy $\phi_F = (E_F - E_C)/K_BT$ is obtained from the following expression, which takes into account the electron carrier density *n* and conduction band non-parabolicity α [6]:

$$\phi_F = \ln\left(\frac{n}{b_0 N c}\right) + b_1 \left(\frac{n}{N c}\right)^{a_1} + b_2 \left(\frac{n}{N c}\right)^{a_2} \tag{3}$$

With:

$$b_0 = 1 + 3.75\alpha + 3.28\alpha - 2.461\alpha^2 \tag{4}$$

$$b_1 = 0.994 - 3.333\alpha \tag{5}$$

$$b_2 = -(0.577 - 7.93\alpha + 78.6\alpha^2 - 349\alpha^3)$$
(6)

$$a_1 = 0.526 + 0.236 \exp\left(-\frac{\alpha + 0.00211}{0.0279}\right)$$
(7)

$$a_2 = 0.624 - 12.8\alpha + 128\alpha^2 - 541\alpha^3 \tag{8}$$

Where N_C is the electron effective density, E_F is the Fermi energy, E_C is the conduction band energy, and K_B is the Boltzmann constant.

Figure 1: The reduced Fermi energy as function of donor density.

In the figure 1, we plot the reduce Fermi energy versus ntype doping levels at 77K, the zero energy is taken at the bottom of the conduction band. We observe that when the doping density increases, the band becomes degenerate (i.e. E_f - $E \ge 0$); It is clear that when the doping density is higher then $2x10^{15}$ cm⁻³ the MCT is considered as a degenerate semiconductor. This results indicate that the non-parabolic band play a strong role to have an accurate description of transport parameters.

III. Band structure and dispersion relation

The atoms in HgCdTe crystallize in zinc-blend structure, this structure treats the conduction band as a combination of the Γ , X and L non-parabolic valleys, which are separate from each other. A simple analytical way of introducing non-parabolic is to consider an energy-wave vector relation of the type of Kane's band model [7]:

$$E(1 + \alpha^* E) = \hbar^2 k^2 / 2m^*$$
(9)

Where: \hbar is the reduced plank constant, k is the wave vector, and m^* is the electron effective mass at the conduction band edge.

The effective non-parabolic factor α^* of the conduction band in degeneracy case is given by:

$$\alpha^* = \frac{1}{E_g} \left(1 - \frac{m^*}{m_0} \right)^2 \left(1 - \frac{E_g \Delta}{3 \left(E_g + \frac{2}{3} \Delta \right) \left(E_g + \Delta \right)} \right) \quad (10)$$

Where m_0 is the free electron mass and $\Delta = 0.9eV$ is the spin split-off energy.

The electron effective mass in the narrow band-gap mercury compounds can be established according to the Kane band model, in this work, we use Wielder's expression [8]:

$$m^* = \frac{1}{-0.6 + 6.333 \left(\frac{2}{E_g} + \frac{1}{E_g + 1}\right)}$$
(11)

As result in degenerate HgCdTe, the gap change and become smaller, so the effective mass also, where the non parabolic factor become greater than the case of non degenerate, these changes were modified the transport properties.

IV. Monte Carlo simulation procedure

In this method, the electron is considered as a point particle, where the motion of the electron inside the crystal subject to electric field and consists in drift and collision processes. In MC algorithm, the trajectory of an electron is followed in both r and k space as sequence of "free-flight-scattering" events. The scattering process responsible for terminating a free flight is determined stochastically using a rejection technique [9]. Usually, the scattering rates are expressed as functions of energy and

the self-scattering technique is employed for the selection of time of free flight and scattering mechanisms, the MC algorithm consists of generating random free flight times for each particle, choosing the type of scattering occurring at the end of the free flight, changing the final energy and momentum of the particle after scattering and then repeating the procedure for the next free flight, for more details of the MC model are given in [10].

V. Results

For the MCT the scattering mechanisms taken into account were: ionized impurity scattering, alloy scattering and polar optical phonon scattering, the inter-valley scattering is negligible in the MCT because the ($\Gamma - L$) and ($\Gamma - X$) inter-valley separations energy is being of the order of 2eV [11]. The analytical expression of each of these collisions is detailed in several works [2, 12].

The scattering rates of MCT as a function of the electron energy for impurity concentration of $n=5.4 \times 10^{14}$ cm⁻³ at T=77K are reported in figure 2; we observe that at lower energies (below 18meV) the collisions with the ionized impurities are dominated. However at high energy the total scattering rate increases with energy due to the increasing occurrence of other scattering, polar optical phonon scattering dominates. Figure 3 presents the electron drift velocity as a function of electric field for different values of doping densities calculated by our MC simulator in the degenerate case. Simulated results of non-degenerate case as well as experimental results are also reported. It is clear that at low electric fields (below 50V/cm), the drift velocity increases linearly with the electric field as expected in ohmic region. At higher electric fields, the drift velocity increases sub-linearly with the electric field and tends to a saturation value around 5×10^{5} m/s. Indeed, in the range of high electric fields, the transport is dominated by collisions with polar phonons; we find also that the electron velocity is higher for lower electron densities. This phenomenon is related to the low electron effective mass and to the relatively small polar optical phonon energy which allow impurity scattering to be still noticeable when polar optical scattering is important [2]. The experimental drift velocity obtained by Dornhaus [13] for doping concentration of 5.4×10^{14} cm⁻³ appears to be in a good agreement with the simulated results of degenerate case compared by the drift velocity with the same electron density but without taking into account the degeneracy effect. The improved method reduces the electron velocity by 10%-30% depending on the electric field. Thus the Fermi level approximation and non-parabolicity are essential at high concentration.

Figure 2: Scattering events in $Hg_{0.8}Cd_{0.2}Te$ occurring in the simulation as function of energy at 77K. (1) the alloy scattering, (2&3) and (4&5) the optical phonons scattering characteristic of CdTe, HgTe: absorption scattering and emission scattering respectively, (6) ionized impurities scattering and (7) the total scattering.

Figure 3: Drift velocity versus the electric field of $Hg_{0.8}Cd_{0.2}Te$ at 77K, dashed lines are the MC results using the degenerate approximation, line+ symbol obtained in the case of non-degeneracy for 5.4x10¹⁴ cm⁻³ and the open circles are the experimental results of Ref. [11].

In figure 4 the variation of the mean energy with the electric field in MCT is reported for impurity density variation between 10^{14} and 10^{17} cm⁻³. We remark that, for low electric fields the mean energy is practically constant and equal to the thermal equilibrium energy 13meV; above 50V/cm the energy increases monotonously with the electric fields.

Figure 4: Energy versus electric field of Hg_{0.8}Cd_{0.2}Te at 77K obtained by Monte Carlo simulation for different values of donor concentration.

Another important parameter of the electron transport is investigated here: the drift mobility, figure 5(a) shows Monte Carlo results of the electron drift mobility $(\mu(E) = v(E)/E)$ versus electric field; the mobility decreases remarkably for low-electric fields and for the high electric fields it move to saturate below 9×10^4 cm²/Vs for electric field E=500 V/cm with concentration $n=10^{14}$ cm⁻³, so we can confirm that the mobility in the MCT is particularly high.

The doping dependent low-electric field mobility is illustrated in figure 5(b) with the fitting results using the simplified Masetti's formula [14]:

$$\mu(Nd) = \mu_{\min} + \frac{\mu_{\max} - \mu_{\min}}{1 + \left(\frac{Nd}{Cr}\right)^{\beta}}$$
(12)

Where *Nd* is the donor density, where $\beta = 0.90917$, $Cr = 3.020 \times 10^{15}$ are adjustable parameters, and where $\mu_{\text{max}} = 2.3 \times 10^5 \text{ cm}^2/\text{V.s}$ and $\mu_{\text{min}} = 1.8 \times 10^5 \text{ cm}^2/\text{V.s}$ are the maximum and the minimum drift mobility respectively.

Figure 5: Electron drift mobility in $Hg_{0.8}Cd_{0.2}Te$ versus; (a) electric field and (b) doping concentration at 77K for two cases: degenerate case (\blacksquare), non degenerate case (\bigtriangledown), and (- -) fitting curve compared with those extracted from literature \bigcirc -Ref.[13], and \blacktriangle -Ref.[14].

It is clear, that the mobility does not vary significantly with the level of donor doping range considered; it decreases with the ionized impurity concentration slowly, so it is important to study high- field transport in the MCT. In general, our results appear to be in a good agreement with those extracted from literature.

VI. Conclusion

We have performed a Monte Carlo study of electron transport in steady-state regime in bulk $Hg_{0.8}Cd_{0.2}Te$ at 77 K, which takes in the consideration both non-parabolic energy band and the degeneracy case. In our work, the effects of the scattering mechanisms on the drift velocity, the mean electron energy and low field mobility of $Hg_{0.8}Cd_{0.2}Te$ are determined. Our calculations indicate that the drift velocity and the low-field mobility are

limited strongly by the ionized impurity scatterings. These results are in reasonable agreement with the reported data. A deeper investigation will enable to calculate also the temperature-dependent mobility.

Acknowledgements

This work is partly supported by Algerian ministry of higher education and research (CNEPRU) project N° D03820070006.

References

[1] S.D.Yoo, B.G.KO, G.S.Lee, J.G.Park, K.D.Kwack, Opto-Electronics review 7, 4 (1999)

[2] C.Palermo, L.Varani, J.C.Vaissière, E.Starikov, P.Shiktorov, V.Gružinskis, B.Azaïs, Solid-State Electronics **53** (2009).

[3] Z.J.Quan, G.B.Chen, L.Z.Sun, Z.H.Ye, Z.F.Li, W.Lu, Infrared Physics and Technology **50**(2007)

[4] Sudha Gupta, R.K.Bhan and V.Dhar, Infrared Physics and Technology, **51**(2008), 259-262.

[5] Z.Djuric, Z.Jaksic, A.Vujanic, M.Smiljanic, Infrared Phys. **34**, 6 (1993)

[6] X .Humet, F.Mestres, J. Millan, J. Appl. Phys. 54, 5 (1983)

[7] A.Dutta, P.S.Mallick, Mukhopadhyay, Int.J.Electronics 84, 3 (1998)

[8] M. Weiler, Semiconductor. Semi Met 16,119(1981)
[9] C. Jacoboni, L. Reggiani, Mod. Phys.Rev. 55(1983), 645-705

[10] M. Akarsu, Ö. Özbas, Mathematical and Computional Applications **10**, 1(2005)

[11] C.Jacoboni, P.Lugli, *The Monte Carlo Methods for Semiconductor Device Simulation*, edited by S.Selberherr (Springer-Verlag, Wien, 1989).

[12] G.Masetti, M.Severi, S.Solmi, IEEE Trans. Electron Device **30**, 764 (1983)

[13] B.Gelmont, B.Lund, K.Kim, G.U.Jensen, M.Shur, T.A.Fjeldly, J.Appl.Phys.**71**, 4977 (1992)

[14] G.Nimtz, R.Dornhaus, K.H.Muller, Phys.Rev.B. 10, 8, 3302 (1974)

Journal of Scientific Research

P.O.Box 417 route de Kenadsa 08000 Bechar - ALGERIA Tel: +213 (0) 49 81 90 24 Fax: +213 (0) 49 81 52 44 Editorial mail: jrs.bechar@gmail.com Submission mail: submission.bechar@gmail.com Web: http://www2.univ-bechar.dz/jrs/