
 RML6, 2008
Micro-systemic Linguistic Analysis and Software Engineering: a
synthesis

 5

Micro-systemic Linguistic Analysis and

Software Engineering: a synthesis

 CARDEY Sylviane
GREENFIELD Peter
Centre Lucien TESNIERE
Université de Franche-Comté

Résumé :
Dans cet article nous essayons de montrer que l’analyse
linguistique micro-systémique comporte des propriétés
inhérentes qui satisfont certaines notions pertinentes du
génie logiciel et de plus, que ses fondations
mathématiques apportent les méta-descriptions dont a
besoin le processus de développement du logiciel.

1. Introduction
In this paper we endeavour to show that micro-systemic
linguistic analysis has certain inherent features which
satisfy notions pertinent to software engineering and
furthermore that its mathematical underpinnings provide
the meta-descriptions required for the software
development process.
To this end, the methodological approach that we adopt
is to view the potential synthesis from two points of
view, one being that of micro-systemic linguistic analysis
and the other engineering. The notions that are pertinent
for each are summarised in the following diagram:

 RML6, 2008
Micro-systemic Linguistic Analysis and Software Engineering: a
synthesis

 6

Micro-Systemic
Linguistic Analysis

Engineering

Capturing micro-systemic
linguistic analysis

Application of engineering
principles to micro-systemic
linguistic analysis

Examples Examples
Generic model
mathematically based
Compositionality
Explicit constraints:
Global:
correct (no
falsehoods)
complete (no more, no less)
Local:
nested
Inherent systemic
traceability

Engineering:
Project management
Quality management
Linguistic Engineering:
Corpus analysis
Performance & Competence
Software Engineering
Lifecycle
Configuration management
Linguist as user AND
programmer
Formal Specification
Performance

It will be observed that with ‘Engineering’ we have taken
a wider perspective than the title of the paper would
suggest; this is because we wish to show that software
engineering has a contribution too to linguistic
engineering in the context of micro-systemic linguistic
analysis.

2. Micro-Systemic Linguistic Analysis
The notion of micro-system is due to Yves Gentilhomme
(GENTILHOMME 1985). Micro-systemic linguistic
analysis (CARDEY, S. 1987) is based on the postulate

 RML6, 2008
Micro-systemic Linguistic Analysis and Software Engineering: a
synthesis

 7

that a language can be segmented into individual systems
based on the observation that such systems influence
each other.
Micro-systemic linguistic analysis proposes that to be
processed safely languages have to be decomposed into
systems which can be analysed by a human being and by
machine because they are small enough but also
complete so as to be able to work together as a unified
system. As well as this, the systems so delimited can
interact with other such systems, and this interaction is a
property of language. Nothing is independent; lexis,
morphology, syntax are linked.
Applications of micro-systemic linguistic analysis are
very varied (CARDEY & GREENFIELD 2006) ranging
over:
Grammar teaching: the Studygram system
Disambiguated parts of speech tagging: the Labelgram
system
Machine translation of 'far' language couples (including
anaphoric reference and zero anaphor processing)
Grammar checking and correcting (including noun
phrase identification)
Sense mining: the Classificatim system
Safety critical applications where evaluation ability is
required in the form of validation and traceability as in
controlled languages, for example:
aircraft cockpit alarm message vocabulary
machine translation of medical protocols.
3. The Methodology
Micro-systemic linguistics methodology consists in
analysing a linguistic system in component systems as
follows:

 RML6, 2008
Micro-systemic Linguistic Analysis and Software Engineering: a
synthesis

 8

Sc: a system which is recognisably canonical;
Sv: another system representing the variants;
Ss: a 'super' system which puts the two systems Sc and
Sv in relation with each other.

3.1 Establishing a Micro-systemic Linguistics Analysis
This requires modelling system Ss. To do so for some
application, the linguist establishes two categorisations:
Firstly a 'non-contextual' (nc) categorisation of the
canonical forms in relation with the variant forms in
isolation, the context being limited to just the canonical
and variant forms themselves.
Secondly an 'in-context' (ic) categorisation of the
canonical forms in relation with the variant forms in
terms of the linguistic contexts of the variant forms. The
systemic analysis reveals precisely what other internally
related linguistic systems are involved.
As to which categorisation (nc or ic) to start with and
even whether it is possible or feasible to sequence the
establishment of the two categorisation depends on
various factors such as:
What prior knowledge is available? For example existing
classifications as for example a parts of speech tag set;
the simplicity or otherwise of organising observations
including their extraction. For example in machine
translation and in concept mining, concepts (semes)
which will constitute the canonical forms are themselves
often revealed during the analysis process at the same
time as the contexts indicating their presence as variants
in the language.

 RML6, 2008
Micro-systemic Linguistic Analysis and Software Engineering: a
synthesis

 9

3.2 Mathematical Modelling
The mathematical modelling of the core structure in
micro-systemic linguistic analysis is reported in detail in
(CARDEY & GREENFIELD 2005). Being ‘core’ we
will not address the algebraic composition of micro-
systems. In this paper our interest is to present those
results which are conducive to engineering in general and
software engineering in particular knowing that this
mathematical model leads to a computational model. In
this respect, the mathematical model represents the pivot
between the formal linguist and the software engineer.
For systems Ss, Sc and Sv, let S be a set structure
modelling super system Ss, let C the set of canonical
forms, let V be the set of variant forms, and let CV be the
binary ordered relation between C and V corresponding
to system Ss.
Each of the above two categorisations, 'nc' and 'ic', can be
modelled by a partition on CV; we have Pnc and Pic.
Given that we have partitions, from the fundamental
theorem on equivalence relations, it follows that there
exist two corresponding equivalence relations Enc and
Eic on CV. Each equivalence class in respectively Enc
and Eic corresponds to a distinct categorisation or case.
We model system Ss, the super system relating systems
Sc and Sv, by means of the ordered binary relation S
between the equivalence relations Enc and Eic, and
similarly S-1 between Eic and Enc.
We can subsequently model functions for finding the
canonical element(s) corresponding to a variant element
and vice-versa or others such as finding the (name of the)
canonical equivalence class for a variant element as for
example in parts of speech tagging. Furthermore, because

 RML6, 2008
Micro-systemic Linguistic Analysis and Software Engineering: a
synthesis

 10

we have a precise structure for S, we can verify that a
given linguistic analysis representation is well formed. In
respect of equivalence relations and when the linguistic
domain consists of strings, we note that every finite
automaton induces a right invariant equivalence relation
on its input strings (HOPCRAFT & ULLMAN 1969, pp.
28-30).

4. An Example Linguistic System
We use as an example ‘the doubling or not of the final
consonant in English words before the endings -ed, -ing,
-er, -est, -en’.
This system, Doubling_or_not, comprises the following
component systems:
ScDoubling_or_not, the words concerned in their basic form,
that is their canonical form; e.g. 'model', 'frolic'
SvDoubling_or_not, the words concerned in their derived or
inflected form, the variants; e.g.
'model-ing', 'modell-ing', 'frolick-ed'
SsDoubling_or_not, the super system relating systems
ScDoubling_or_not and SvDoubling_or_not.
In respect of C (the set of canonical forms), V (the set of
variant forms), and CV (the binary ordered relation
between C and V corresponding to system Ss), for
Doubling_or_not the linguist observes:
CDoubling_or_not =
{…, model, frolick, …}
VDoubling_or_not =
{…, modeling, modelling, frolicked, …}
CVDoubling_or_not =
{…, (model, modeling), (model, modelling), (frolick,
frolicked), …}

 RML6, 2008
Micro-systemic Linguistic Analysis and Software Engineering: a
synthesis

 11

4.1 The Non-contextual Corpus Analysis
The non-contextual (nc) corpus analysis results in:

Non-contextual (nc) corpus analysis Doubling_or_not
Canonical Variant Attestation
model Modelling WNCD

1981
model Modelling CEOED

1971
frolic Frolicked CEOED

1971
where the attestations are in:
WNCD = Webster's New Collegiate Dictionary
CEOED = Concise Edition of the Oxford English
Dictionary
The 'non-contextual' (nc) categorisation leads to the
following representation of system SncDoubling_or_not
(which can be stored as a spread-sheet):
System Snc Doubling_or_not – Non-contextual (nc) analysis
Conditions
Id Condition text
cv Word with final consonant in English taking -ed, -ing, -er,

-est, -en
cvd Doubling of the final consonant
k The words terminating in -ic take –ck
Operators
Id Operator text
N No doubling of the consonant
D Doubling of the consonant
K The words terminating in –ic take –ck
Algorithm with case justifications in organigramme form
Line

Level Condition Canonical OperatorVariant Attestation

0 0 cv model N modeling WNCD 1981
1 1 cvd model D modelling CEOED 1971
2 2 k frolic K frolicked CEOED 1971

 RML6, 2008
Micro-systemic Linguistic Analysis and Software Engineering: a
synthesis

 12

4.2 Some Observations Concerning the Formalisation
A case based algorithmic analysis approach is used. The
conventional representation of algorithm (nc) which
above is in ‘organigramme’ form is as follows:
 if condition cv is true
 then if condition cvd is true
 then if condition k is true
 then operator K
 else operator D
 fi
 else operator N
 fi
 fi
The analysis approach is by nature intuitionistic and
constructive; conditions in the algorithm are by nature
positive and not negative; in the logical representation of
the algorithm no use is made of the excluded middle. In
other words our mathematical model of an analysis is
based on classical logic and it is constructive. Being
constructive it lends itself to calculable operations. The
model theoretic model of SncDoubling_or_not is as follows:
 cv ∧ ¬ cvd ∧ N ∧ ¬ D ∧ ¬ K ∨
 cv ∧ cvd ∧ ¬ k ∧ ¬ N ∧ D ∧ ¬ K ∨
 cv ∧ cvd ∧ k ∧ ¬ N ∧ ¬ D ∧ K

In the model, each line contains a conjunction which
corresponds to an interpretation which itself can be
interpreted as a proof justification of the case. The set
formulation of conditions components (nc) where set CV
is the set engendered by proposition (condition) cv etc. is
as follows:

 RML6, 2008
Micro-systemic Linguistic Analysis and Software Engineering: a
synthesis

 13

Non-contextual (nc) analysis
Algorithm
Line # Level

Set name Set formulation

0 0 CVnc.0 CV \ CVD
1 1 CVnc.0.0 CV ∩ CVD \ K
2 2 CVnc.0.0.0 CV ∩ CVD ∩ K

4.2.1 Partitioning (non-contextual) the Set CV
The sets CVnc.0, CVnc.0.0 and CVnc.0.0.0 partition the
set CV:
The intersection of the sets CVnc.0, CVnc.0.0 and
CVnc.0.0.0 is the empty set:
∩{ CVnc.0, CVnc.0.0, CVnc.0.0.0} = ∅
The union of the sets CVnc.0, CVnc.0.0 and CVnc.0.0.0
is the set CV:
∪{ CVnc.0, CVnc.0.0, CVnc.0.0.0} = CV

4.2.2 Equivalence relations over CV
Non-contextual (nc)
The sets CVnc.0, CVnc.0.0 and CVnc.0.0.0 partition the
set CV. Being a partition, the algorithm has determined
an equivalence relation Enc over CV, each of the sets
CVnc.0, CVnc.0.0 and CVnc.0.0.0 is an equivalence
class., The number of equivalence classes, that is the
index of the equivalence relation Enc, inc, is 3 (the
number of lines in the algorithm).
In-context (ic)
A similar argument applies.
The index of the equivalence relation Eic, iic, is 13.

 RML6, 2008
Micro-systemic Linguistic Analysis and Software Engineering: a
synthesis

 14

4.3 The In-context Analysis
The ‘in-context' (ic) categorisation leads to the following
representation of system SicDoubling_or_not (which can be
stored as a spread-sheet):

Sic Doubling_or_not - In-context (ic) analysis
Conditions
Id Condition text
cv word with final consonant in English taking –ed, -ing, -er, -est, -en
a word of a syllable of the form C-V-C
b terminated by C-V-C or by C-V(pronounced)-V(pronounced)-C
c last syllable accented
d terminated by –l or –m
e used in England
f "(un)parallel"
g "handicap, humbug"
h "worship, kidnap"
i terminated par –ic
j "wool"
Operators
Id Operator text
N No doubling of the consonant
D Doubling of the consonant
K The words terminating in –ic take –ck
Algorithm with case justifications in organigramme form
Line # Level Condition Canonical Operator Variant Attestation
0 0 cv feel N feeling CEOED 1971
1 1 a run D runner CEOED 1971
2 1 b answer N answerer CEOED 1971
3 2 c dis'til D dis'tiller CEOED 1971
4 2 d model N modeling WNCD 1981
5 3 e model D modelling CEOED 1971
6 4 f (un)parallel N (un)paralleled CEOED 1971
7 2 g handicap D handicapped CEOED 1971
8 2 h worship N worshiped WNCD 1981
9 3 e worship D worshipped CEOED 1971
10 2 i frolic K frolicked CEOED 1971
11 1 j wool N woolen CEOED 1971
12 2 e wool D woollen CEOED 1971

 RML6, 2008
Micro-systemic Linguistic Analysis and Software Engineering: a
synthesis

 15

4.4 Formulation of the Super System
The super system SsDoubling_or_not is formulated as the
ordered binary relation S between the equivalence
relations Enc and Eic, each over CV, shown here with
the materialisation of its associated graph.

 Ss

Enc S Eic

Set subtraction \ → Set subsetting ⊃ →

['run > runner]
a > D

[dis'til > dis'tiller]
c > D
['model >
'modeling]
d > N

['modell
>
modeling]
e > D

['parallel >
'paralleled]
f > N

['handicap > 'handicapped]
g > D

['worship >
'worshiped]
h > N

['worship >
'worshipped]
e > D

['answer
>
answerer]
 b > N

['frolic > 'frolicked]
i > K

Set
sub-
setting
⊂
↓

['model >
'modeling]
cv > N

'model >
'modelling]
rd > D

'frolic >
'frolicked]
i >K

 Set
sub-
traction
\
↓

['feel >
'feeling]
cv> N

['wool >
'woolen]
j > N

['wool > 'woollen]
e > D

CV

5. Exploiting the Mathematical Modelling
The examples are illustrated using the system
Doubling_or_not.
5. 1 Computerised Source Representations
5.1.1 Use of Spreadsheets
Spread-sheets (idem) are convenient for capturing the
development of the analysis and for storing source forms.

 RML6, 2008
Micro-systemic Linguistic Analysis and Software Engineering: a
synthesis

 16

5.1.2 Liapunof of Shestopal Algorithmic Representation
The in-context algorithm:
algorithm("a ^ 1 D. v 1 b ^ 2 c ^ 3 D. v 3 d ^ 4 e ^ 5 f
^ 6 N. v 6 D. v 5 N.v 4 g ^ 7 D. v 7 h ^ 8 e ^ 9 D. v 9 N.
v 8 i ^ 10 K. v 10 N.v 2 j ^ 11 e ^ 12 D. v 12 N. v 11
N.").

5.1.3 Binary Decision Tree Algorithmic Representation
The in-context algorithm:

condition(a) ->
 operateur('D',0) ;
 condition(b) ->
 condition(c) ->
 operateur('D',1) ;
 condition(d) ->
 condition(e) ->
 condition(f) ->
 operateur(N,2) ;
 operateur('D',3) ;
 operateur('N',4) ;
 condition(g) ->
 operateur('D',5) ;
 condition(h) ->
 condition(e) ->
 operateur('D',6) ;
 operateur('N',7) ;
 condition(i) ->
 operateur('K',8) ;
 operateur('N',9) ;
 condition(j) ->
 condition(e) ->
 operateur('D',10) ;
 operateur('N',11) ;
 operateur('N',12).

 RML6, 2008
Micro-systemic Linguistic Analysis and Software Engineering: a
synthesis

 17

5.2 Algorithm Execution
The trace of an interactive execution of the in-context
algorithm for the word ‘model’ is as follows:

Microsystem: 'System Sic Doubling_or_not - In-context
(ic) analysis'
Version: '30:11:2006'
0: cv: Word with final consonant in English taking -ed,
-ing, -er, -est, -en ? y/n : y
1: a: Word of a syllable of the form C-V-C ? y/n : n
2: b: Terminated by C-V-C or by C-V(pronounced)-
V(pronounced)-C ? y/n : y
3: c: Last syllable accented ? y/n : n
4: d: Terminated by -l or -m ? y/n : y
5: e: Used in England ? y/n : y
6: f: (un)parallel ? y/n : n
5 Last true condition: e Canonical: model
5 Operator_Id: D : 'Doubling of the consonant'
Variant: modelling Justification: 'CEOED 1971'
Trace = 5 - [cv,\+ a,b,\+ c,d,e,\+
f,covj(model,[ovj('D',modelling,'CEOED 1971')])]

5.2 The Model-theoretic Model and Algorithms
The model-theoretic model of the micro-system can be
generated from the algorithm:

Microsystem: 'System Sic Doubling_or_not - In-context
(ic) analysis'
Version: '30:11:2006'
Model:
0 - [cv,\+ a,\+ b,\+ j,covj(feel,[ovj('N',feeling,'CEOED
1971')])]

 RML6, 2008
Micro-systemic Linguistic Analysis and Software Engineering: a
synthesis

 18

1 - [cv,a,covj(run,[ovj('D',runner,'CEOED 1971')])]
2 - [cv,\+ a,b,\+ c,\+ d,\+ g,\+ h,\+
i,covj(answer,[ovj('N',answerer,'CEOED 1971')])]
3 - [cv,\+ a,b,c,covj('dis''til',[ovj('D','dis''tiller','CEOED
1971')])]
4 - [cv,\+ a,b,\+ c,d,\+
e,covj(model,[ovj('N',modeling,'WNCD 1981')])]
5 - [cv,\+ a,b,\+ c,d,e,\+
f,covj(model,[ovj('D',modelling,'CEOED 1971')])]
6 - [cv,\+ a,b,\+
c,d,e,f,covj('(un)parallel',[ovj('N','(un)paralleled','CEOED
1971')])]
7 - [cv,\+ a,b,\+ c,\+
d,g,covj(handicap,[ovj('D',handicapped,'CEOED
1971')])]
8 - [cv,\+ a,b,\+ c,\+ d,\+ g,h,\+
e,covj(worship,[ovj('N',worshiped,'WNCD 1981')])]
9 - [cv,\+ a,b,\+ c,\+ d,\+
g,h,e,covj(worship,[ovj('D',worshipped,'CEOED
1971')])]
10 - [cv,\+ a,b,\+ c,\+ d,\+ g,\+
h,i,covj(frolick,[ovj('K',frolicked,'CEOED 1971')])]
11 - [cv,\+ a,\+ b,j,\+
e,covj(wool,[ovj('N',woolen,'CEOED 1971')])]
12 - [cv,\+ a,\+ b,j,e,covj(wool,[ovj('D',woollen,'CEOED
1971')])]
#Model = 13

In general there are many functionally identical
algorithms that can be generated from a model theoretic
model (the conditions and operators resting unchanged).
Let PN be the number of algorithms that can be generated

 RML6, 2008
Micro-systemic Linguistic Analysis and Software Engineering: a
synthesis

 19

from a model with N conditions, where all the 2N
possible interpretations are present. We have:
 PN = N × (PN-1)2
where P2 = 2 (HUMBY 1973, pp. 32-34).
 In consequence alternative functionally identical
algorithms can be generated to meet specific needs such
as speed optimisation in automated applications.

5.3 Sets Defined during the Algorithm Execution
The sets defined during the execution of the non-
contextual algorithm are as follows (the same arguments
apply to the in-context algorithm):

Non-contextual (nc) analysis
Algorithm
Line # Level

Set name Set formulation

0. 0. CV'nc.0 CV
1. 1. CV'nc.0.0 CV ∩ CVD
2. 2. CV'nc.0.0.0 CV \ CVD ∩ K

The sets so defined form a collection of proper sub-sets
(the same arguments apply to the in-context algorithm):

Non-contextual (nc) analysis
Algorithm line # Parent set ⊃ Line set
 CV'nc.0 ⊃ CV'nc.0.0
 CV'nc.0.0 ⊃ CV'nc.0.0.0

The sets defined during the execution of the in-context
algorithm at the same (nesting) level and with common
parent set are mutually disjoint:

 RML6, 2008
Micro-systemic Linguistic Analysis and Software Engineering: a
synthesis

 20

In-context (ic) analysis
Algorithm
Line

Level
Set name Set formulation

0. 0 CV'ic.0 CV
1. 1 CV'ic.0.0 CV ∩ A
2. 1 CV'ic.0.1 CV \ A ∩ B
3. 2 CV'ic.0.1.0 CV \ A ∩ B ∩ C
4. 2 CV'ic.0.1.1 CV \ A ∩ B \C ∩ D
5. 3 CV'ic.0.1.1.0 CV \ A ∩ B \C ∩D ∩ E
6.

4
CV'ic.0.1.1.0.0 CV \ A ∩ B \C ∩D ∩ E ∩

F
7. 2 CV'ic.0.1.2 CV \ A ∩ B \ C \ D ∩ G
8. 2 CV'ic.0.1.3 CV \ A ∩ B \ C \ D \ G ∩

H
9. 3 CV'ic.0.1.3.0 CV \ A ∩ B \ C \ D \ G ∩

H ∩ E
10. 2 CV'ic.0.1.4 CV \ A ∩ B \ C \ D \ G \ H

∩ I
11. 1 CV'ic.0.2 CV \ A \ B ∩ J
12. 2 CV'ic.0.2.0 CV \ A \ B ∩ J ∩ E

5.4 Well Formed Representations
For a micro-systemic linguistics analysis representation
to be well formed, two constraints must be met:

1. Proper sub-setting
2. Disjunction.

For automatic applications, as for example the Labelgram
disambiguating tagger system (CARDEY &
GREENFIELD 2003), both constraints can be processed

 RML6, 2008
Micro-systemic Linguistic Analysis and Software Engineering: a
synthesis

 21

automatically using abstract interpretation techniques
(ROBARDET 2003). As a result this enables:
automated verification
speed optimisation:
proper sub-setting : removal of redundant context
constraints
disjunction re-ordering

5.5 Case Justifications
Being a partition with each equivalence class being
associated directly with a line in the algorithm allows us
to include a justification for each class. Each class
corresponds to a distinct case. Case justifications can be:
competence (the linguist's) based
performance based in including an attestation; for
example: observed in a corpus and corroborated by the
linguist entry in a relevant dictionary (in particular for the
lexis). Thus, absence of a case attestation would imply
competence; it should be noted that scientific method
requires that a theory be demonstrated by experimental
evidence. Thus linguistic practice normally involves
substituting competence based justifications (no
attestation) by performance based justifications
(attestation present).
Case justifications assist evaluation processes such as
validation and regression testing and are essential in
safety critical applications (CARDEY et al. 2006).
Case justifications, precisely because they are case based,
can serve as the basis for evaluation benchmarks.

 RML6, 2008
Micro-systemic Linguistic Analysis and Software Engineering: a
synthesis

 22

6. Conclusion
The synthesis of micro-systemic linguistic analysis and
software engineering can be illustrated by the following
diagram:

Micro-systemic linguistic
analysis

Software engineering

Methodology & tools to create micro-systemic analyses

Abstract mathematical model
Micro-system
Concrete tools
Possible auto-verification

 Linguistic analysis

process:
Computer aided
corpus analysis of
chosen existing
documents
→
concrete micro-
system

Platform
Machine
interpretation of
concrete micro-
system:
Applied to new
documents
→
interpretations
+
justifications

 RML6, 2008
Micro-systemic Linguistic Analysis and Software Engineering: a
synthesis

 23

References
- CARDEY, S. 1987. Traitement algorithmique de la
grammaire normative du français pour une utilisation
automatique et didactique, Doctorat d'état, Université de
Franche-Comté, France.

- CARDEY S., GREENFIELD P. 2003. Disambiguating
and Tagging Using Systemic Grammar. In Proceedings
of the 8th International Symposium on Social
Communication, Santiago de Cuba, Actas I, pp.559-564

- CARDEY, S., GREENFIELD, P. 2005. A Core Model
of Systemic Linguistic Analysis. In Proceedings of the
International Conference RANLP-2005 Recent Advances
in Natural Language Processing, Borovets, Bulgaria, 21-
23 September 2005, pp. 134-138.

- CARDEY, S., GREENFIELD, P. 2006. Systemic
Linguistics with Applications. In Linguistics in the
Twenty First Century. Cambridge Scholars Press, United
Kingdom, ISBN 1904303862, pp. 261-271.

- CARDEY S., GREENFIELD P., BIOUD M.,
DZIADKIEWICZ H., KURODA K., MARCELINO I.,
MELIAN C., MORGADINHO H., ROBARDET G.,
VIENNEY S. 2006. The Classificatim Sense-Mining
System. In Advances in Natural Language Processing,
Springer-Verlag – LNAI 4139, ISBN 3-540-37334-9, pp.
674-684.

 RML6, 2008
Micro-systemic Linguistic Analysis and Software Engineering: a
synthesis

 24

- GENTILHOMME Y. 1985. Essai d’approche
microsystémique, Théorie et pratique, Application dans
le domaine des sciences du langage, Peter Lang, Berne.

- HOPCROFT, J.E., ULLMAN, J.D. 1969. Formal
languages and their relation to automata, Addison-
Wesley Publishing Company.

- HUMBY, E. 1973. Programs from decision tables,
Macdonald/American Elsevier, ISBN 0 356 04126
3/ISBN 0 444 19569 6.

- ROBARDET, G. 2003. Vérification automatisée des
règles de contexte du logiciel Labelgram, Mémoire de
maîtrise, Sciences du langage mention TAL, Besançon,
Université de Franche-Comté, France.

