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Résumé

La commande robuste basée sur le calcul d'ordre fractionnaire gagne de plus en plus d’intérêt parmi la communauté des chercheurs
du domaine de la commande. Dans cet article, une conception d'un régulateur de tension automatique (AVR) robuste basée sur le calcul
d'ordre fractionnaire est présentée. La stratégie de conception du contrôleur est établi de telle sorte que la fonction de transfert en boucle
ouverte du système AVR est la fonction de transfert idéale de Bode qui est très utilisée dans le domaine de la commande d'ordre
fractionnaire en raison de sa propriété d'iso-amortissement qui est une caractéristique importante dans la robustesse. La technique de
conception proposée consiste à choisir les pôles et les zéros du contrôleur pour forcer la fonction de transfert en boucle ouverte de l'AVR
d’être la fonction de transfert idéale de Bode. L’idée de base et les équations de la méthode de conception du contrôleur sont présentées.
Des simulations ont été effectuées pour tester l'efficacité et l'utilité de l'approche proposée pour la conception du contrôleur. L’analyse
des performances aux variations du gain et de la constante de temps du générateur de l'AVR ont été également présentés. Des
comparaisons ont été faites avec le contrôleur PID classique pour montrer la robustesse de la conception proposée par rapport aux

incertitudes des paramètres du générateur.

Mots clés : AVR, boucle idéale de Bode, les opérateurs ordre fractionnaire, le contrôleur d'ordre fractionnaire,
la fonction d’approximation Rational, Robustesse.

Abstract

Robust control based on fractional order calculus is gaining more and more interests from the control community. In
this paper, a robust automatic voltage regulator (AVR) design based on fractional order calculus is presented. The
controller design strategy is drawn up such that the open loop transfer function of the AVR system is the Bode’s ideal
transfer function that is widely used in the fractional order control domain because of its iso-damping property which is an
important robustness feature. The controller design consists of choosing the poles and the zeros of the proposed controller
to force the AVR open-loop transfer function to be the Bode’s ideal transfer function. The basic ideas and the derived
formulations of the controller design are presented. Simulations were made to test the effectiveness and the usefulness of
the proposed controller design approach. Performances analysis to variations of the gain and the time constant of the
generator of the AVR were also presented. Comparisons are made with PID controllers to show the robustness efficiency of
the proposed design with respect to the generator parameters uncertainties.

Key words: AVR, Bode’s ideal loop, fractional order operators, fractional order control, rational function
approximation, robustness

ملخص
في . المراقبة القویة التي تعتمد على حساب الأس الكسري تكتسب المزید و المزید من الاھتمام من قبل الباحثین في میدان المراقبة

إستراتیجیة تصمیم المراقب وضعت لكي . یعتمد على حساب الأس الكسري)AVR(قدمنا تصمیم قوي لمنظم الجھد التلقائيھذه البحث
التي تستخدم في نطاق واسع للمراقبة ذات BODEھي معادلة الحلقة المفتوحة المثالیة ل AVRتكون معادلة الحلقة المفتوحة من نظام 

تصمیم المراقب تعتمد على اختیار الأقطاب و الاصفار للمراقب . والتي ھي میزة ھامة في التقویةامدالأس الكسري بسبب خاصیة التخ
, الأفكار الأساسیة و الصیغ المشتقة قد عرضت. BODEأن تكون المعادلة المثالیة لAVRالمقترح لإجبار معادلة الحلقة المفتوحة 

وقد قدمت أیضا تحلیل الكفاءة لتغییر الربح و ثابت وقت . تصمیم المراقب المقترحوقدمت التشابھ لاختیار فعالیة و جدوى من منھجیة
لإظھار كفاءة متانة التصمیم المقترح فیما یتعلق بقضیة PIDتم إجراء مقارنات مع المراقب. AVRالمولد لمنظم الجھد التلقائي

خصائص المولد

 ǒỸƧƤƝƮ:ƸỵỸƚƤǔƣỷ қƲǜƣỷ ƥƅƫƧ)AVR(بود المثالیة، مشغل النظام الجزئي، ومراقبة النظام الجزئي،، حلقة

.وظیفة التقریب العقلانیة ، المتانة
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ractional order control (FOC) is a field of control
theory that uses fractional order operators and systems

as part of the control system design schemes. The
generalization to non-integer-orders of traditional
controllers or control schemes translates into more tuning
parameters and more adjustable time and frequency
responses of the control system, allowing the fulfillment of
robust performances. In recent decades a considerable focus
on FOC has been simulated by the applications of this
concept in different areas of control fields [1-6].

Some early work on FOC, though without mention of
the term fractional, was done by Bode who proposed an
open loop transfer function to maintain stable operation of
feedback amplifiers for large gain variation, nowadays
known as Bode’s ideal transfer function [7]. Applying
Bode’s idea to the position control of massive object,
Tustin et al proposed a fractional order open loop transfer
function in order to keep phase margin invariant to gain
changes around the crossover frequency [8]. The first
attempts towards the application of fractional calculus in
feedback control system can be found in [9-11]. But the
first who really introduced a fractional order controller was
Oustaloup who developed the so-called CRONE controller
and used it in various control applications [1].

Recently Podlubny, by combining the classical PID
controller and the fractional calculus, proposed the
fractional PIλDμ controller, involving an integration action
of order λ and differentiation action of order μ [12]. Since,
many tuning techniques of the fractional PIλDμ controller
have been proposed to fulfill different control design
specifications [13-20]. In [21], we can find a good tutorial
on fractional calculus in controls; additionally, several
typical known fractional order controllers have been
presented and commented. Through the range of design
techniques and applications, it is clear that FOC has
become an important research topic.

In a synchronous generator, the electromechanical
coupling between the rotor and the rest of the system
exhibits an oscillatory behavior around the equilibrium
state, following any disturbance, such as sudden change in
loads. Hence, synchronous generator excitation control is
one of the most important measures to enhance power
system stability and to guarantee the quality of electrical
power it provides.

Essentially, an automatic voltage regulator (AVR)
system is a system that holds the generator terminal voltage
magnitude at a specified level under normal operating
conditions at various load levels [22]. Because the PID
controller has a simple structure which is easy to be
understood by engineers and has good performances within
a wide range of operating conditions, it continues to be the
main component in the AVR system. Different PID
parameter tuning strategies have been reported in the
literature to realize an AVR system with the best dynamic
response [23-30].

More recently, fractional order PIλDμ controller has also
been proposed for the purpose of system control quality
enhancement and improvement of the AVR control system

[31-36]. The interest of this kind of controllers is justified
by a better flexibility, since it has two more parameters, the
fractional integration action order λ and the fractional
differentiation action order μ. These parameters can be used
to fulfill additional specifications for the design or other
interesting requirements for the AVR control system.

In this paper, a control scheme to design a robust AVR
system based on fractional order calculus is presented.
Inspired from a recent fractional controller design technique
[37], the proposed controller design strategy is drawn up
such that the overall open loop transfer function of the
AVR system is the Bode’s ideal function that is widely
used in the fractional order control domain because of its
iso-damping property which is an important robustness
feature.

The design technique consists of choosing the poles and
the zeros of the proposed controller to force the overall
open-loop transfer function of the AVR system to be the
approximation of the Bode’s ideal transfer function in a
given frequency interval. Simulations were made to test the
effectiveness and the usefulness of the proposed controller
design approach. Performances analysis to variations of the
gain and the time constant of the generator of the AVR
were also presented. Comparisons are made with PID
controllers to show the robustness efficiency of the
proposed design with respect to the generator parameters
uncertainties.

1. BODE’S IDEAL TRANSFER FUNCTION

Bode in [7] has find that the ideal open loop transfer
function to design a closed loop feedback amplifier whose
performance is invariant to changes in the amplifier gain is
a fractional integrator with transfer function :
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
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


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u
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s

1
(s)H     , for 21  (1)

where u is the unity gain crossover frequency.

Known, nowadays as the Bode’s ideal transfer function,
this function exhibits important properties such as infinite
gain margin and constant phase margin leading to the iso-
damping property which is an important robustness feature
for the feedback control system. This robustness has
motivated some researchers to consider the unity feedback
control system whose forward path transfer function is the
Bode’s ideal transfer function as shown in figure 1.

Figure 1 : Feedback system with Bode’s ideal transfer function in
the forward path

F
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Thus, the closed-loop transfer function of the fractional
order system of Fig. 1, is given by:
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1
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Besides of the iso-damping property, this fractional
system exhibits behavior from relaxation to oscillation. It
has also been shown that all the time and frequency
performances of the feedback control system of (2) whose
open loop is the Bode’s ideal function of (1) depends on the
parameters  and u only [38-39]. For these raisons, it has
been considered as a control reference system in lot of work
in the literature.

1.1. Fractional Order Integrator

The analog transfer function of the fractional order
integrator is represented in the frequency domain by the
following irrational function:
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(s)H I      ,     for 0 (3)

In a given a frequency band of interest [ωL, ωH] with a
given integer number N, a chosen error of approximation in
dB y and a chosen frequency ωc such that ωc < ωL, the
rational function approximation of the fractional order
integrator HI(s) can be expressed as follows [16, 40]:
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with N1 is the integer part of the fractional order  and the

poles ip  and the zeros iz  are : pi = p0(ab)i (for i = -N1…,-
1,0,1,…,N) and zi = ap0(ab)i  (for i = 0,1,…,N); where the
approximation parameters a, b and p0 are given as follows
[16, 40] :
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1.2. Oscillation Fractional Order System

The oscillation fractional order system is defined by the
following transfer function [41]:
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where 0 is the characteristic relaxation time and 1 <  < 2.

In a given frequency band of interest [0, ωH], the
transfer function of the oscillation fractional order system
of (5) can be approximated by a rational function as follows
[41] :
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where the parameter , the zeros iz  ( i=0,1,…,N) and the

poles ip  ( i=0,1,…,N) are given by :
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The approximation parameters a, b, z0 and N are given
as follows [41]:
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where the parameters ωmax is such that ωmax >> ωH and  is a
given error of approximation in dB.

By partial fraction expansion the rational function of (6)
can be rewritten as [41]:
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where the residues ki (i=0,1, …, N), the constants A and B
are :
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where the constants C and  are :
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Then, using the inverse Laplace transform of (9), we
will get:
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where the constant 1 is : 
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2. DESCRIPTION OF THE AVR MODEL

The mathematical model of the AVR system used in
this work is a linear model which takes into account the
major time constants and ignores the saturation or other
nonlinearities. The linear and simplified AVR system
comprises four main components, namely amplifier,
exciter, generator, and sensor. The transfer functions of
these components including limits of their parameters are
given as follows [22], [24-26]:
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The block diagram of the AVR system in closed loop
with a controller C(s) and the transfer functions of the
amplifier, exciter, generator and sensor is given in figure 2.

Figure 2 : block diagram of the AVR system in closed loop with a
controller C(s)

The open loop transfer function G(s) of the AVR system
of Fig. 2, is given as:
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where C(s) is the controller’s transfer function and Gp(s) is
a transfer function given as:

)s1)(s1)(s1)(s1(

KKKK
)s(G)s(G)s(G)s(G)s(G

sgea

sgea
sgeap 
 (13)













































4321

sgea
p

s
1

s
1

s
1

s
1

KKKK
)s(G

    (14)

where













































s
4

a
3

e
2

g
1

1111

are the poles of Gp(s).

3. PROPOSED AVR SYSTEM DESIGN METHOD

In this work, the objective of the projected AVR system
is to design a controller C(s) which will guarantee that the
open loop transfer function G(s) = C(s) Gp(s) of (12)
behaves, in a frequency range [ωL, ωH] around a given
frequency u, as the Bode’s ideal function. Hence, we will
have:
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where  is a number such that 1 <  < 2 and ωu is a positive
real number.

It has been shown that the time and frequency
performances of the unity feedback control whose open
loop is the Bode’s ideal function of (15) depend on the
parameters  and u [38-39]. Then, the dynamic
performance requirements of the projected AVR system
have to be translated in terms of  and u. If the CRONE
controller design technique was used the controller’s
transfer function C(s) will be given as [1] :
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But, in this context, the proposed controller C(s) will be
designed in a different way than the one proposed by the
CRONE controller of (16). Once the two parameters  and
u are chosen based on the dynamic performance
requirements of the projected AVR system, the frequency
band of interest [ωL, H] around u where the open loop
transfer function G(s) of the AVR system approximates the
Bode’s ideal function of (15) is given as [ωL= u/, ωH =
u] for .

In section 2.1, we have presented the approximation by
a rational function, in a given frequency band of interest
[ωL, ωH], of the fractional order integrator.

Hence, from (4) the Bode’s ideal function of (15) can be
approximated as:
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where ip (i = -1…,-1,0,1,…,N) and iz  (i = 0,1,…,N) are
the poles and zeros of the approximation. The controller
new design technique is based on the manipulation of the

poles ip  of the approximation of the fractional order

integrator of (17) such that four of these poles are almost
equal to the poles 1, 2, 3 and 4 of Gp(s) of (14). This
pole manipulation can be easily done by choosing the right
approximation parameters given in section 2.1 by a trial and
error method. After doing so, the above rational function
can be decomposed in two parts as:
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where sgeap KKKKK  ,  
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and the poles pj1, pj2, pj3 and pj4, are almost equal to the
poles 1, 2, 3 and 4,of Gp(s) of (14), respectively, with -
1 ≤ j1 < j2 < j3 < j4 ≤ N. Because we have forced  the right
part of the above equation to be almost equal to the function
Gp(s); then the controller’s transfer function C(s) is given as
:
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In this design method, C(s) must be causal. But as we can
see from the controller’s transfer function C(s) of (19) there
is (N+1) zeros and (N-2) poles. Then to guarantee its
causality we must add at least three poles such that they
will have no effect on the design in the given frequency
band [ωL, ωH] around the given crossover frequency u. In
this context the three poles are added after the last pole pN
of the approximation by a rational function of the fractional
order integrator of (17). So, the three added poles are given
as :
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 abpp 2N3N            (20)

where  is a positive real number chosen to ameliorate the
approximation of the fractional order integrator
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function C(s) will be :
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(21)

From figure  2, the closed loop transfer function Gc(s) of
the AVR system is given as:
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From (12) and (13) we have :

)s(G)s(G)s(G)s(G)s(C)s(G)s(C)s(G sgeap  ;

so, we will get:
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Now, for vref(t) = u(t) = the unit step, Vref(s) =
1/s; we will have :
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Then the step response of the AVR system is
given as follows:
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Theoretically,
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So, in this case, the ideal step response of the closed
loop AVR system is given as follows:
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where, for τ0 = 1/u, h(t) and h1(t) are the impulse and step
responses of the oscillation fractional order system of (5)
given in (8) and (10), respectively, as:
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4. SIMULATIONS RESUSLTS AND COMPARISONS

4.1. Controller design for the AVR system

The block diagram of the practical AVR system in
closed loop with nominal values of the parameters of the
transfer functions of the amplifier, exciter, generator and
sensor is given in figure 3, [23-25]. This AVR system
model will be used in this work to verify the efficiency of
the proposed controller. Only the variations of the gain and
the time constant of the generator will be considered for the
performances and robustness analysis because we want that
the AVR system to hold the generator terminal voltage
magnitude at a specified level under normal operating
conditions at various load levels.

Figure 3 : block diagram of the practical AVR system

The transfer function Gp(s) of the above AVR system is
given as:
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The goal of the projected AVR system is to design the
controller C(s) which will guarantee that the open loop
transfer function G(s) = C(s) Gp(s) of the AVR system is
the Bode’s ideal transfer function GB(s) given as follows:
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The dynamic performance requirements of the projected
AVR system are: a small settling time ts and a small or no
overshoot Os (%) [23-25]. These requirements have to be
translated in terms of the two parameters  and u of the
Bode’s ideal transfer function. The values of the parameters
 and u can be estimated from the time characteristics
(overshoot and settling time) of the oscillation fractional
order system of (5) given in [38] using the Mittag-leffler
approach or in [39] using the approach of [41]. The above
dynamic performance requirements can be satisfied for  =
1.1 and u = 40 rad/s.

Hence, the open loop transfer function G(s) of the AVR
system will be:
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So, from section (2.1), the fractional integrator of (32)
can be approximated as:

 
   








































N

Ni i

N

0i i

1.0
c1

1.1

1.1p

1
p

s
1

z

s
1

p

40

40

s

1
)s(G)s(C

 (33)

For the unity gain crossover frequency u = 40 rad/s, the
frequency band of interest around u is [L, H] = [u/10,
10u] = [4 rad/s, 400 rad/s]. Also, for N=10, y = 0.2948 dB,
ωc = 0.3624 rad/s and N1=1, the approximation parameters
a, b, and p0 are: a = 1.0783, b= 1.9716, p0 = 0.5088. Then,
the poles and zeros of (33) are :

pi = p0(ab)i = 0.5088(2.1260)i (for i = -1,0,1,…,10) and

zi = ap0(ab)i = 0.5486(2. 1260)i (for i = 0,1,…,10).

Hence, the open loop transfer function G(s) = C(s) Gp(s) of
the AVR system will be:
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 (34)

By choosing the right parameters ωc and y, we have
made the poles p1=1.0818, p2=2.3, p4=10.3957 and
p7=99.8951 of the approximation of the fractional integrator
of (33) almost equal to the poles 1=1.0, 2=2.5, 3=10.0
and 4=100.0of Gp(s), respectively. So, the rational
function of the right hand side of (34) can be decomposed
in two parts as:
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Because the right hand side of the above equation is
almost equal to the function Gp(s), the left hand side is then
the controller’s transfer function. Therefore, C(s) is given
as:
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The controller’s transfer function C(s) of (36) is not
causal because it has 11 zeros and 8 poles. To guarantee its
causality we must add at least three poles such that they
will have no effect on the controller’s design.

In this context, the three poles which will be added after
the last pole p10 of (36) are given as :
p11=0.5088(2.1260)(11+), p12=(2.1260)p11 and
p13=(2.1260)p12

where  is a positive real number given by  = 3.43. This
number is chosen to ameliorate the approximation of the
fractional order integrator of (34), especially its phase.

Finally, the designed controller’s transfer function C(s)
will be:
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Hence, the open loop transfer function G(s) = C(s) Gp(s)
is given as:
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Figure 4, shows the Bode plots of the open loop transfer
function G(s) of (38) and the Bode’s ideal function
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 of (32).

From Fig. 4, we can easily see that the unity gain
crossover frequency is u= 40 rad/s and around it the slope
is exactly -20(1.1) = -22.00 dB/dec and the phase is - (1.1)
90° = -99.00°.

This means that around the unity gain crossover
frequency u= 40 rad/s the open loop transfer function G(s)
of (38) behaves as the Bode’s ideal function

1.1

B 40

s
(s)G









 of (32). So, this result shows the

accuracy of the phase’s flatness around the unity gain
crossover frequency u= 40 rad/s.
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Figure 4 : Bode plots of the open loop function G(s)  and the
Bode’s ideal function GB(s)

From Figure 3, the parameters Ks and τs of the sensor are
Ks=1 and τs=0.01, So, the closed loop transfer function
Gc(s) of the AVR system of (23) is given as:
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(39)

and the terminal voltage step response of the closed loop
AVR system is :
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where G(s) is the open loop transfer function of the AVR
system of (38).

Theoretically, we have

1.1

B 40

s
)s(GG(s)









 , so

from (39) the ideal closed loop transfer function GBc(s) of
the AVR system is given as:
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and from (27), the ideal terminal voltage step response of
the closed loop AVR system is:

)t(h01.0)t(h)t(v 1t                 (42)

where the functions h(t) and h1(t) of (28) and (29),
respectively, are obtained using the approximation
technique of [41].

In the frequency band [0, ωH] = [0, 1600 rad/s] and for
an approximation error  = 0.5 dB, the approximation
parameters given in section (2.2) are: = 0.8871, max =
2000 rad/s, a = 3.1622, b = 1.1364, z0 = 42.642, p0 =
134.846, N = 6, A= 0.0243, B = 1.0546, C = 1.0576,  =
1.1656, 1 = 2.6620. So, for i = 0, 1, …, 6, we can get :
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Then, the functions h(t) and h1(t) are:
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Figure 5, shows the Bode plots of the closed loop
transfer functions Gc(s) of (39) and the ideal closed loop
transfer function GBc(s) of the AVR system of (41). Fig. 6,
shows also the terminal voltage step responses of the closed
loop AVR system of (40) with the proposed controller and
of the ideal terminal voltage step response of (42).

Figure  5 : Bode plots of the closed loop transfer function Gc(s)
and the ideal closed loop transfer function GBc(s)

From figure 5, we can easily see that around the unity
gain crossover frequency u = 40 rad/s the amplitudes and
the phases of the closed loop transfer function Gc(s) and the
ideal closed loop transfer function GBc(s) of the AVR
system of are quiet overlapping. Then, this result shows the
effectiveness of the proposed controller design strategy.

From figure 6, we can also see that the two terminal
voltage step responses are almost the same. So, the
designed closed loop AVR system with the proposed
controller behaves as the ideal closed loop AVR system
whose closed loop transfer function is GBc(s).
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We can also note that the proposed controller produces
a very small settling time with a very small overshoot and
steady state error.

Figure 6 : The terminal voltage step response of the closed loop
AVR system with the proposed controller and the ideal terminal
voltage step response

4.2. performance comparison and robustness
analysis

In this section, we will compare the performances as
well as the robustness with respect to the variations of the
gain Kg and the time constant g of the generator of the
proposed AVR system design to the results of the designed
AVR system of [25] using a classical PID controller where
a chaotic optimization approach based on Lozi map has
been used in the tuning of the parameters of the PID
controller.

In this comparison, we have used the same dynamic
performance requirements adopted in [25]. Using the same
nominal values of the parameters of the transfer functions
of the amplifier, exciter, generator and sensor of figure 3,
the designed PID controller with the optimized gains for the
AVR system is given as [25]:

s218.0
s

453.0
622.0sK

s

K
K)s(C D

I
PPID    (43)

Then, the open loop transfer function GPID(s) = CPID(s)
Gp(s) is given as:
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In this case, the closed loop transfer function GPIDc(s) of
the AVR system is:
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And the step response of the closed loop AVR system
is:
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Fig.ure 7, shows the Bode plots of the open loop

transfer functions    sGsCG(s) P  of (38) of the

proposed approach and  sG)s(C(s)G pPIDPID  of (44)

of the approach in [25].

Figure 7 : Bode plots of the open loop transfer functions G(s) and
GPID(s)

From figure 7, we note that the proposed AVR system
design presents a flat phase around its unity gain crossover
frequency but the designed AVR system of [25] does not.
We know that the flatness of the phase around its unity gain
crossover frequency of the open loop transfer function of a
feedback control system exhibits the so called iso-damping
property of its step response which is an important
robustness characteristic. Figure 8, shows the terminal
voltage step responses of the closed loop AVR system of
(46) with the PID controller of (43) and of the closed loop
AVR system of (40) with the proposed controller of (37).

Figure 8 : The terminal voltage step response of the closed loop
AVR system with the proposed controller and with the PID
controller
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From Fig. 8, we note that the proposed and the PID
controllers achieve a small overshoot, a small settling time
and a steady state error. However, the settling time of the
AVR system with the proposed controller is much smaller
than the one with the PID controller of [25].

In the linearized model of equation (11), the generator is
represented by the gain Kg and time constant tg. These
constants are load dependent where Kg varies between 0.7
and 1.0 and g between 1.0 and 2.0. Hence, to measure the
robustness of the performances of the proposed AVR
system design and compare them with the designed AVR
system with a classical PID controller of [25], we will
analyze the variations of their respective phase margins φm

overshoots Os(%) and the settling times Ts in terms of the
variations of the gain Kg and the time constant g of the
generator. In both closed loop AVR system designs the
controllers are derived and kept unchanged in the
robustness analysis for the nominal values of Kg = 1.0 and
g = 1.0. To show the variations of the performances of the
closed loop AVR system, the two terminal voltage step
responses of the closed loop AVR system with the PID and
the proposed controllers are given, respectively, in figures
9, 10 and 11, for the following three cases :

- nominal value of Kg = 1.0 and maximum value of g = 2
- nominal value of g = 1 s and minimum value of Kg = 0.7
- minimum value of Kg = 0.7 and maximum value of g=2s.

Figure 9 : The terminal voltage step response of the closed loop
AVR system with the PID controller  and with the proposed
controller for Kg = 1 and g = 2 s

The obtained performance results of the overshoot
Os(%) and the settling time Ts in terms of the variations of
the gain Kg and the time constant g of the generator for the
nominal and the three above case are summarized in the
table 1.

From Table 1, we note that the performance variations of
the closed loop AVR system with the PID controller [25]
are much larger than the ones of the closed loop AVR
system with the proposed controller. This shows the
effectiveness of the proposed AVR design.

Figure 10 : The terminal voltage step response of the closed loop
AVR system with the PID controller  and with the proposed
controller for Kg = 0.7 and g = 1 s

Figure 11 : The terminal voltage step response of the closed
loop AVR system with the PID controller  and with the proposed
controller for Kg = 0.7 and g = 2 s

Table 1 : Performance results of the overshoot Os(%) and the
settling time Ts

Kg and g values
Proposed AVR

design
PID AVR design

[25]

Kg =1 and g =1
(Nominal cas)

Os(%) = 2.576
Ts = 0.126

Os(%) = 0.3716
Ts = 0.990

Kg = 1 and g = 2e
Os(%) = 3.755

Ts = 0.3299
Os(%) = 7.4925

Ts = 3.3506

Kg = 0.7 and g = 1
Os(%) = 2.2458

Ts = 0.1613
Os(%) = 0.471

Ts = 1.256

Kg = 0.7 and g = 2
Os(%) = 3.755

Ts = 0.3299
Os(%) = 8.666

Ts = 4.037
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Figures 12 and 13 show, respectively, the plots of the
variations of the phase margin φm of the closed loop AVR
system versus the gain Kg and the time constant g for the
proposed and the classical PID controller of [25].

Figure 12 : Plot of the phase margin φm versus Kg and g of the
AVR system with the proposed controller

Figure 13 : Plot of the phase margin φm versus Kg and g of the
AVR system with a classical PID controller of [25]

Figures 14 and 15 show, respectively, the plots of the
variations of the overshoots Os(%) of the AVR system
versus Kg and g for the proposed and the classical PID
controller of [25].

Figure 14 : Plot of the overshoot Os(%) versus Kg and g of the
AVR system with the proposed controller

Figure 15 : Plot of the overshoot Os(%) versus Kg and g of the
AVR system with a classical PID controller of [25]

Figures 16 and 17 show, respectively, the plots of the
variations of the settling time of the AVR system versus Kg

and g for the proposed and the classical PID controller of
[25].

Figure 16 : Plot of the settling time versus Kg and g of the AVR
system with the proposed controller

Figure 17 : Plot of the settling time versus Kg and g of the AVR
system with a classical PID controller of [25]

From the six figures. 12-17, we clearly see that the plots
of the phase margin φm, the overshoot Os(%) and the
settling time versus the generator’s gain Kg and time
constant g of the closed loop AVR system with the
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proposed controller are completely flat and the ones of the
closed loop AVR system with the classical PID controller
of [25] are sloped and distorted. This means that the
performances of the closed loop AVR system with the
proposed controller are almost insensitive to the variations
of the gain Kg and the time constant g of the generator.
According to these results, it can be said that the proposed
closed loop AVR system is robust and provides the desired
control behavior without the effect of changes of the load.
Hence, the terminal voltage of the generator of the
proposed closed loop AVR system is almost load
independent.

CONCLUSION

In this work, a robust AVR design using fractional order
control techniques has been presented. The proposed
controller design strategy guarantees that the open loop
transfer function of the AVR system is the Bode’s ideal
transfer function that is widely used in the fractional order
control domain because of its iso-damping property which
is an important robustness feature. The controller design
process has been shown to be based on the rational function
approximation of the fractional order integrator. The
obtained simulations results in terms of frequency and time
responses and performances analysis of the closed loop
AVR system have shown the effectiveness and the
usefulness of the proposed AVR system design.
Comparisons are made with a PID controller and it has
been clearly seen that the proposed controller can highly
improve the system robustness with respect to the generator
parameter’s changes due to load. Then, according to these
results, it can be said that the proposed closed loop AVR
system is robust, provides the desired control behavior and
makes the terminal voltage of the generator almost load
independent.
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