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Résumé  

Les simulations numériques des caractéristiques de l’écoulement laminaire axisymétrique   autour d’une sphère rigide en 

démarrage impulsif, sont présentées pour des nombres de Reynolds variant entre 20 et 1000. Les résultats sont obtenus par 

résolution de l’équation  de Navier-Stokes complète, instationnaire dans sa formulation rotationnel-fonction de courant. Un 

schéma numérique compact précis à l’ordre 4 est utilisé pour la discrétisation de l’équation de Poisson pour la fonction de 

courant et est combiné à la méthode implicite aux directions alternées pour l’équation de transport de la vorticité. Nous 

présentons l’évolution temporelle de l’angle de séparation et de la longueur du tourbillon. Nous examinons aussi la 

variation au cours du temps de la vitesse axiale et de la vorticité autour de la sphère. Le tourbillon secondaire est initié au 

temps adimensionné 5 pour un Reynolds proche de 610. Les données numériques et expérimentales, dans le cas 

stationnaire, disponibles dans la littérature présentent une bonne concordance avec nos résultats.  

 

Mots clés :Ecoulement transitoire, hermitian compact, longueur de vortex, ,sphère  
 

 

Abstract   

Numerical simulations of the axisymmetric laminar flow characteristics past a rigid sphere impulsively started are 

presented for Reynolds numbers from 20 to 1000. The results are obtained by solving the complete time dependant Navier-

Stokes equations in vorticity and stream function formulation. A fourth order compact method is used to discretize the 

Poisson equation of stream function while the vorticity transport equation is solved by an alternating direction implicit 

method. Time evolution of flow separation angle and length of the vortex behind the sphere are reported. Time variation of 

the axial velocity in the vortex and the wall vorticity around the sphere are also examined. Secondary vortices are seen to 

be initiated at Reynolds number of 610 and for dimensionless time t about 5. Comparisons with previously published 

simulations and experimental data for steady state conditions show very good agreement. 
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.ملخص          

كة الدافعة مقدمة محاكاة  عددية لخصائص الانسياب الطبقي المتماثل محوريا حول جسم كروي صلب دو الحر
.تحصلنا على النتائج بتحليل معادلة  نافيي ستوكس  الكاملة و المحظرة على  0222و  02لأعداد رينولدس بين 

 شكل دالة التيار والدوران الدوامي. 
طريقة التفصيل العددي  المستعملة لتحليل معادلة بواسون بدقة  من الدرجة الرابعة هي طريقة متضامه   

 ياق طريقة  "الاديئي"   . استعملت بس
نقدم نتائج التطور الزمني لزاوية الانفصال السيلان من الجسم الكروي و طول الحركة  الدوامية. قدمنا كذالك 
التطور مع الزمن للسرعة المحورية داخل الدوامة و قيمة الدوامة على سطح الجسم الكروي. بينت المحاكاة 

 .  5في الزمن   002ابة عدد رينولدس العددية ميلاد الدوامة الثانوية قر

 .تبين أتفاقا جيد بالنسبة للسيلان المستقر مع المحاكاة المنشورة سابقا والبيانات التجريبية المقارنات

 
 المجال ،دوامة طول المدمجة، الهرميتي، عابرة تدفق :الكلمات المفتاحية  
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ntroduction : 

 

The steady and unsteady viscous flows over a spherical 

particle have been extensively studied by different   

numerical approaches and experimental methods (Rimon 

and Cheng (1969),Benabbas (1987) Fornberg (1988), 

Johnson and Patel (1999), Lee (2000), Benabbas et al. 

(2003), Gushchin and Matyushin (2006), Sekhar et al. 

(2012)). The transient development of the momentum 

transfer or heat and mass transfer around a sphere has 

received rather much less attention (Benabbas and Brahimi 

(2012)). The accelerating conditions of the particle motion 

have been considered in numerical studies at moderate 

Reynolds numbers (Lin and Lee (1973), Reddy et al. 

(2010)). In the present paper, the time evolution of the flow 

induced by an   impulsively started sphere is considered for 

Reynolds numbers up to 1000. This case constitutes a 

reference model for more complex practical situations such 

as the behaviour of the flow around particles in fluidizing 

systems (Kechroud et al. (2010a,b)). Similar  problem for 

the cylinder has been investigated numerically (Ta Phuoc 

Loc and Bouard (1985), Thoman and Szewczyk (1969), 

Collins and Dennis (1973) and experimentally (Bouard and 

Coutanceau (1980)). A very good agreement between the 

simulations and the experimental results was observed 

including the complex structure of the secondary vortices. 

We have   used   the same efficient numerical method to 

conduct the analysis of the separated laminar flow over a 

sphere. The numerical   method is based on a high-order 

compact scheme for spatial discretization of  the stream 

function equation and   a second-order one (ADI) to handle 

the vorticity equation  while the time discretization is of 

second-order accuracy. The transient development of  the 

flow is examined  through  the presentation  of  its main 

characteristics. Time evolution of the separation angle with 

Reynolds number is presented. The wall vorticity behavior 

for increasing   time and Reynolds number is analyzed. The 

length  of  the  recirculation region with time  behind the 

sphere is also reported.  The magnitude of axial velocities 

in the vortex  illustrates  the increasing strength of flow  

mixing  with  time and Reynolds number. The  Steady  state 

results of drag coefficient, angle of separation and  length 

of  the  recirculation  region  compare very well  with  those 

obtained  by different  numerical  methods  in  previous  

works. 

 
2-Mathematical formulation 
 
2.1 governing equations 

  
 The governing equations for the present 
purpose are the equations of conservation of mass 
(continuity) and momentum (Navier-Stokes ), they 
are written in vector form with dimensionless 
variables  as:  
 

        

                                          (1) 
 

(2) 

     

In this simulation the velocity vector  has two 

components ,  

where p  is the static  pressure and  the fluid density , g the 

gravitational acceleration  ad z  is the height  . 

 , is the Reynolds number  based on the 

sphere diameter 2a, twice the radius a; the velocity of the 

fluid far from the sphere  and ν is the kinematic viscosity 

.We used in equations (1) and (2) the dimensionless 

variables defined as :   ;  ;   

    ;    ;   ;  the 

asterisk  indicates  the dimensional variables. 

Equations (1) and (2) are applied on the domain 

 accompanied with 

the  boundary conditions which are: the no slip condition on 

the surface of the sphere ,  and the 

uniformity of the flow far from the 

obstacle, . 

In addition we get the axisymetric hypothesis of the flow 

around the sphere. 

First of all the unsteady Navier-Stokes equations are 

rewritten in vorticity and stream function formulation. We 

have used, for this purpose, the coordinate transformation  

 rln
   to refine the mesh  in the vicinity of the 

sphere, where gradients may be important, without 

increasing the number of nodes, otherwise in the angular 

direction we change only the name of the variable , 

the transformed domain is then 

. 

The numerical methodology begins with the first equation 

(1), it’s  used to define the stream function we have: 

  ;                     (3) 

 

Equation (2) is transformed from it’s original form when 

we take it’s rotational, the term of pression get out and we 

have:    
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D2  is a differential operator 

      (4) 
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Otherwise the definition is developped 

in spherical coordinates then the velocity 

components are replaced with the first derivatives 

of the stream function defined from the continuity 

equation  

 

        (4) 

 

 

 
Figure 1 schematic spatial domain   

 

Each point of the transformed domain 

  is specified by it’s 
indices: 

  and   with 

  

 

 

 
Figure 2 transformed domain mesh 

 

 

2.2 Initial and boundary conditions  
 

 Since the simulation is concerned with an 

impulsively started movement, all dependant variables are 

equal to zero at initial time . 

       Otherwise the boundary conditions of the problem 

are translated in terms of the variables and the 

derivatives of  . Therefore, we can write on the sphere 
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  from equation (4) 

                                             

 

for surface conditions on the vorticity,  we have drawn a 

relation from the fourth order Taylor expansion of the 

stream function  using only the first two nodes in the 

radial direction ; after that derivatives of  are replaced 

and then we obtain:  
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The conditions far from the sphere are those of an 

irrotational flow, so they are expressed for t ≥ 0 as: 

 and      

                                              

 

The first and second partial derivatives of   can 

be easily derived from  . 

The axisymetric hypotheses enforce the conditions 

 

 

 

 
 
3-Methodology of resolution 

 
The numerical method used in our simulation is presented 

for the first time in Bontoux (1978) and has proven its 

efficiency to simulate the flow over an impulsively started 

cylinder (Ta Phuoc Loc (1980), Ta Phuoc Loc and Bouard   

(1985). We have extended the use of this method for the 

study of the viscous flow over a sphere at moderate and 

high Reynolds numbers (Benabbas (1987)).  

Because of the absence of boundary conditions on the 

rotational derivatives, the transport of rotational equation is 

not treated by the compact scheme. And it’s the stream 

function equation witch benefits from enough conditions on 

all derivatives . So the use of Hermitian compact for 

equation (8) accompanied with the closure relations from 

the Merhstellen method [Cf. benabbas], for the derivatives 

: 

Equation (8) is rewritten in an pseudo unsteady form and 

we use  Optimum convergence coefficients   of 

WASCHPRESS [ cf. benabbas] they are calculated for  

iterations. 

 

 (6) 

 

For each iteration, equation (9) is discretised relative to 

only one direction so 

 in radial direction we have: 

 

        
 (7) 

 
 

 

 
 

With the boundary conditions 

 

 

 

 
 
And in angular direction we have 

 

 
    

 

 

 
 

With bounady conditions : 

 

 

 

 
Regarding to the transport equation, The Peaceman –

Rachford A.D.I. scheme  is applied to the vorticity transport 

equation (6). The temporal evolution from   is 

calculated in two steps, first of all   

, we have 

First step of the resolution: 

In the angular direction  equation (6)   : 

 

 

 
 

 will correspond to either  or  depending on 

whether the term   has positive or negative 

value, in order to reinforce the principal diagonal. 

 

Resulting in the tridiagonal equations : 

 

 
With the conditions  

And in the second time step: 

 

 

 
 
Then we develop  and then gather identical 

multiplier terms to get  

 

 
Completed With the discretisation of parietal condition on 

the rotational (10) 
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And the irrotational flow far from the sphere :  

 
 

The method combines two numerical schemes. The 

classical ADI scheme is used to  resolve  the transport 

equation of the vorticity and  the other, based on a compact 

hermitian  method, is applied to the Poisson equation of the 

stream function (Benabbas (1987) for the details). This 

equation is treated as a parabolic one with the introduction 

of a pseudo-time and optimum coefficients of convergence 

are used in the iterative calculations. 

 In each direction ( and ) new dependant variables are 

taken into account : 
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and  for the second half time step. 

The steady state is determined with a test on the vorticity 

field   n1n
=10-4. 

 

3-Results and discussion 
3.1 steady state flow characteristics 

 
       Time evolution of the laminar separated flow past 

an impulsively started sphere has been calculated for 

various Reynolds numbers in the range of  20  to 

1000. Before presenting transient dynamic behavior of 

the flow field, we would like to illustrate the 

efficiency of the numerical method used by presenting 

comparisons of our calculations for some important 

steady state characteristics with published 

experimental data and simulation results based on 

different numerical methods.  
 

 

 

       Fig.3: steady state angle of separation                         

 

 

 
 

Fig.4: steady state drag coefficient 
 

 

Figure 3 compares results of the angle of separation 

and shows very good agreement between practically 

all the data for the Reynolds numbers considered. The 

drag coefficient is presented in figure 4 and indicates 

an excellent agreement with experimental correlations 

and  numerical results of different authors up to 

Reynolds number of 500. But for higher Reynolds 

numbers our calculations are close to those of 

Fornberg (1988) than the simulations of Feng and 

Michaelides (2001). The vortex length is reported in 

figure 5 and compared with experimental and 

numerical data. We observe a satisfactory agreement 

between them. The DNS results on figures 3 and 5 are 

of Reddy et al. (2010). 

 
 

 
Fig.5: steady state  length of  recirculation  region   
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All the above confrontations comfort the efficiency 

and accuracy of the numerical method used 

in the present study. 
 

3.2 transient flow characteristics 

        
 Figures 6 and 7 show  the vorticity  at  the surface of 

the sphere with time for Reynolds number 

respectively equal to 300 and 1000. The early stages 

of the flow are characterized  by a fast growth of the 

recirculation region before reaching a slow 

development towards  the steady state. 
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Fig.6: vorticity on the sphere at Re=300 
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Fig.7: vorticity on the sphere at Re=1000 

 
The sign change of the vorticity observed for Reynolds 

number of 1000 and time about t=5 indicates the birth of a 

secondary vortex of  weak  

  strength  which has opposite rotation to the main vortex. 

This happens when the back flow   itself separates from the 

sphere. The Reynolds number for which this phenomenon 

appears first is found to be 610.   

In the case of a cylinder and for Reynolds number  of 1000 

two secondary vortices are observed (Ta Phuoc Loc (1980), 

Bouard and Coutanceau (1980)). 

 

Figure 8 shows forward separation angle versus time 

for increasing Reynolds number. At early times the 

separation  point  moves  at a rapid rate but then 

slowly approaches its steady state value. The transient 

length of the vortex behind  the sphere for the same 

Reynolds numbers is reported on   figure 7.                                              

                                             

10
-1

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

time

s
e
p
a
ra

ti
o
n
 a

n
g
le

 

 

Re=500

Re=300

Re=200

Re=150

Re=100

Re=50

 
Fig.8: time evolution of separation angle 

 

At the early stages the vortex grows rapidly in size 

and then followed by a slow approach to its final 

steady  state  value. The calculated steady state vortex 

lengths compare very well with values reported in 

other numerical and experimental studies as shown 

above (fig.5). 

 

Fig.9: time evolution of vortex length 
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Figures 10 and 11 illustrate time evolution of the axial 

velocity on the axis of symmetry behind the sphere for 

Reynolds numbers of 300 and 1000. We can   observe 

the increasing of the velocity modulus in the vortex 

region with time and Reynolds number but is  limited 

to values  lower than one. In the case of a cylinder, 

values higher than one are calculated (Ta Phuoc Loc 

(1980)). The growth of the velocity modulus with 

time illustrates the action of the convective mixing in 

the vortex. This action becomes stronger with 

increasing Reynolds number. 
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Fig.10:  time variation of axial velocity at Re=300 

 

The null value of the velocity on the axis indicates the 

limit of the vortex region and so its length. For the 

same time, the vortex length is slightly higher for 

Re=300 than for Re=1000.  
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Fig.11: time variation of axial velocity at Re=1000 

 
 
 
 
 

 
CONCLUSION 

        
  The complex problem of the transient laminar 

separated flow over an  impulsively started  sphere 

has been conducted  with efficient  mixed  hermitian 

compact method. The steady state results have been 

successfully compared to the highest accurate 

methods used till now. The transient characteristics of  

the flow have concerned  the vorticity on the  sphere 

under  the influence of Reynolds number and  the  

results  revealed  the appearance of secondary vortex 

at Reynolds number of 610. Time evolution of the 

separation angle and the vortex length are also 

presented and the simulations  have shown a rapid 

growth of these characteristics at the early stages of 

the flow development. The transient behavior of axial 

velocity behind the sphere  indicated  how the 

convective mixing  in the vortex  increases with time 

and  Reynolds number. The present results constitute 

a valuable basis to understand  the enhancement of  

heat and mass transfer in cyclic regime of fluidized or 

fixed beds. 
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