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Abstract 

Using the general modified field equation, a general noncommutative Klein-Gordon 
equation up to the second order of the noncommutativity parameter is derived in the context 
of noncommutative 2D De Sitter space-time. Using Bogoliubov coefficients and a special 
technics called conformal time; the boson-antiboson pair creation density is determined. The 
Von Neumann boson-antiboson pair creation quantum entanglement entropy is presented to 
compute the entanglement between the modes created presented. 
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I. INTRODUCTION 
During the last few years, noncommutative (N.C.) 

Seiberg–Witten (S.W.) space–time geometry has played an 
important role in understanding various phenomena for 
example in particle physics and cosmology [1]–[3]. A great 
effort has been made in understanding quantum processes in 
strong fields, where the associated vacuum instability leads to 
an additional source of quantum processes and could enhance 
the particle creation. Furthermore, quantum entanglement 
(Q.E.) has been extensively studied in nonrelativistic flat-
space setups and expanding universes [4]–[16]. Increasing 
interest to the emerging field of relativistic quantum 
information and entanglement has attracted many people 
[17]–[23]. Refs. [18] and [19], show that Q.E. of fermionic 
and bosonic particles in a certain type of Freedman–
Robertson– Walker (F.R.W.) universe has been shown to 
have special k-modes frequencies and antifermions pair 
creation modes mass dependence. In fact, as it was pointed 
out in [18], the response of Q.E. to the dynamics of the 
expansion of the universe is affected by the particular choice 
of quantum field theory employed and the geometric structure 
of space–time. Information about the rate and volume of the 
expansion are codified in the frequency and amount of the 
entangled modes. To quantify the entanglement created 
between bosonic modes in noncommutative 2D De Sitter 
space-time we choose the Von Neumann entropy, which is 
related to Shannon’s measure of information, which is 
important in the context of the information capacity. It is 
recommended to mention that a useful interpretation of the 
Von Neumann entropy is that it represents the minimum 
number of bits required to store the result of a random 
variable. The goal of this paper is to study the Von Neumann 
quantum entanglement boson-antiboson modes created by the 
dynamics of the noncommutative 2D De Sitter space-time. 

II. MATHEMATICAL FORMALISM 
The noncommutative space-time is characterized by the 

operators that satisfy the following noncommutation 
relation: 

               [ ] θ µννµ ix̂,x̂ =                                  (1) 

where θ µν  are antisymmetric matrix elements that control 
the noncommutativity of the space–time. The Klein-Gordon 
equation is given by:  

          [ ] ( ) 02 =−∂∂ xmg ψνµ
µν                       (2) 

The approach that we follow in this paper in order to derive 
the noncommutative Klein-Gordon equation, is based on 
deforming the scalar density that given by: 

   ( )( )φφφφ νµ
µν ˆ*ˆmˆD̂*ˆD̂*ĝ*êL †† 2+=             (3) 

By applying the modified field equation, which takes the 
following form:
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                                                                                          (4) 

By using the generic field , such that: 

                          φλφδ λ
ˆ*ˆiˆˆ =                                        (5) 

So, we can get directly the noncommutative Klein-Gordon 
equation that takes the following form: 

M F GHITI 
H AISSAOUI 
Laboratory of Mathematical and 
Subatomic Physics, Physics 
Department, Faculty of Exact 
Sciences, Frères Mentouri University 
Constantine, Algeria. 



 M. F. GHITI And H. AISSAOUI 

10 
 

( ) φν
µν

µνµ
µν ˆmgg

g
g 










+∂−∂

−
−∂∂− 21

   

( )( )φθθ νσβ
µν

ραµ
ρσαβ ˆgg

g
∂∂∂−∂∂∂

−
+

8
1   

 ( )( )+∂∂−∂∂
−

+ φθ νβ
µν

αµ
αβ ˆgg

g
i

2
 

      0

4
2

2 =
















∂∂−∂∂+

∂−∂

− φθ

φ
θ

σβρα
ρσ

βα
αβ

ˆgi

ˆg

g
i

m                                                                                  

    To define the particle states we should follow the quasi-
classical approach of [5] to identify the positive and negative 
modes frequencies and look for the asymptotic behavior of 
the solutions at t → 0 and t → ∞. Secondly, we solve the N.C. 
Klein-Gordon equation and compare the solutions with the 
above quasi-classical limit. An interesting scenario for 
discussing the particle creation process, is the 
noncommutative 2D De Sitter space-time, the metric is given 
by: 

              dxe HtdtdS 2222 −=                     (7) 

 We choose to work in the following parameterization choice 
of θ µν  such that:  
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=
0

0
θ

θ
θ µν                             (8) 

So, it is clear that from this choice we have: 

                    θθθ =−= 1212                              (9) 

By replacing in the precedent equation (Eq. (6)) we can get 
directly the following equation: 
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In order to the N.C. Klein-Gordon equation we suppose that: 

                 ( ) ( ) ( )etFx,tˆ x.i k x=φ                                     (11) 

which allow us to get the following equation: 
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To simplify this equation, we can just collect the parameter, 
in such way the N.C. Klein-Gordon equation written as the 
following form: 

       ( ) 022 =−++∂+∂ )t(Fe HtCBtAt              (13) 

with: 
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     Working in the conformal time  as the following: 

                              
eHtH
1

−=η                                (15) 

The equation (Eq. (13)) can be written as the following 
expression: 
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Of course with a modification in the parameters “ A ”, “ B ” 
and “ C ” because we deal with conformal time. The complete 
solution of the precedent equation (Eq. (16)) is a linear 
combination of the two solutions, which are just the special 
functions “Bessel J” and “Bessel Y” as the expression: 
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(17) 

To identify the positive and negative frequency modes we use 
the Bogoliubov transformation, which allow us to write the 
positive or negative frequency modes in the “in” region as a 
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linear combination of positive and negative modes in the 
“out” region as the following: 

                         ψβψαψ −
∞

+
∞

+ +=0                     (18) 

with the normalization condition: 

                             122 =+ βα                        (19) 

Such that the particle creation density  expressed in terms 
of the Bogoliubov coefficients as the following: 

                   
α

β
2

2

=n̂                                             (20) 

By using a special relation between the Bessel functions, 
which allow us to define the Bogoliubov coefficients in order 
to compute the creation density, which is: 

    ( ) ( ) ( ) ( )
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π
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Using this property we can make the correspondence with 
Bogoliubov transformation, we can define the coefficients  
and , in such way the pair creation density is written as: 
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By replacing the parameter  with its equivalent we find the 
following expression: 
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Over the last decade, the discipline of relativistic quantum 
information has received much attention; its aim is the study 
of the resource and tasks of quantum information Science in 

the context of relativity. In particular finding ways to store 
and manipulate information is a main goal. The importance 
of the entanglement comes from its dominance role in a lot of 
tasks of quantum information, the most important example is 
the teleportation or use it to fight against the major problem 
in quantum information called the decoherence. So to 
quantify the entanglement we have a lot of quantities, which 
allow us to do it, among them we have the Entanglement 
entropy, which is defined by the following expression: 
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Such that: 

                                    n̂B =γ 2                              (21) 

III. CONCLUSION 
In this paper we have derived the noncommutative Klein-

Gordon equation from the modified field equation in the 
context of noncommutative De Sitter space-time. As an 
application within the quantum field theory and using the 
Bogoliubov transformations we have derived the boson-
antiboson pair creation density. Using this density we have 
calculated the Von Neumann entropy that is considered as the 
best tool to quantify the bipartite quantum entanglement 
between modes. More studies about relativistic entanglement 
will be presented in a future paper.  
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