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1. Introduction

he data compression is a domain that knew a renewal of interest from the

nineteen’s. It follows the apparition of the multimedia that has brought an

important flux of audio and video information. This new rise, generated by the
iechnical evolution and the increasing demand of different organisms, allow to the
members of the International Consultative Committee of the Telegraph and the
ephone (CCITT) [1] and the International Organization of Standardization (ISO) [2]
1o elaborate a new compressive international norm of the gray levels and color images.
This group is called JPEG (Joined Photographic Expert Group) and the compressive
‘norm carries the same name [3-5]. The members of the JPEG opted for a method based
on the Discrete Cosine Transform (DCT) [6-7]. The JPEG2000 norm [8-12] focuses the
‘research undertaken after the standard JPEG toward a new norm. Its goal is not limited
‘1o create new algorithms but also to achieve accommodating architectures and
'mmpression formats. Indeed. the achievement of efficient and adapted techniques of
' compression 1s imperative because of the development of the exchanges, transmission
‘and storage of important volumes of data. The goal of this paper is to compare the
.Discrete Cosine Transform (DCT) and the Wavelet Transforms (WT), used respectively
in the JPEG’s norms and JPEG2000’s. We compare the performances of five wavelets:
'ﬂ:le Haar wavelet and the Daubechies wavelets of order 2. 4, 10 and 20. On the level of
‘the quantization, we verify the influence of the report of the retained details (not
truncated to zero) for the WT and the one of the quality factor for the DCT. We use
three entropy encoders: the arithmetic encoder [13]. the Huffman encoder [14] and the
‘Run Length Encoding (RLE).
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2. Different types of compression

The compression reduces the physical size of a block of information by removing the
redundancy that exisis between its elements. This operation permits to reduce the
memaory space of storage. the read and transmission times, what allows the real-timg
working. Inversely, the decompression aims to recover the initial information block
The compressive methods are valued by their compression rate, by the quality (o
accurateness) of the reconstruction and by their execution time. After the compression
the initial data are not more directly accessible as coherent information. It is the stage ol
decompression that permits to recover them. The conservative methods restore an exac
copy of the initial data. The other methods are non-conservative techniques. e
generate a light modification but they succeed elevated compression rate. The choice ¢
the method depends on the nature of the processing data. On the other hand, the
compressive techniques can be predictive or transform coding. On the level of the ls{'
family. only the difference (innovation) between two successive samples is coded.
classic technique of removing redundancy is applied directly on the picture or th
spatial domain. Inverselv, the second family transforms the picture in a different spat
of representation. These methods use some linear transformations in a first step an

code the transformed coefficients in a second step.

3. Conservative compression

The redundancy of the image information generally allows compression without losir
information. The measure of the guantity of information by the entropy of Shannon ll_
proves that in a coded image on 8 bits/pixel, the entropy is generally of 3 or 4 bits/pix
This result leads to a compression rate roughly equal to 2. For this aim, one can uses|
entropy encoder (Huffman [14]. arithmetic coding [13], Ziv-Lempel coding [16], R
etc.). This kind of coding suits for the data that don't tolerate any modifi ::'._'
particularly the computer files. The JPEG norm [3-5] includes a method without loss

includes a first step that makes a linear prediction followed of an entropy encoder.

4. Compression with loss

The compressive methods with loss eliminate some information which are non usé
after the compression-decompression cycle. In imagery, the suppressed details are
noticeable for the visual appreciation of the hwinan eye. The compression with loss
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like main advantag"e the possibility to have elevated and adjustable compression rates.
The deterioration of the picture is evidently function of the gotten compression rate.
Generally, a compression of factor 10 doesn't generate any perceptible deterioration. For
compression rates of more than 100, the deterioration of the picture appears by an
-~ aspect of fuzzy around the edges and on the textured zones. For the JPEG algorithm, an
artifact of the blocks 8x8 appears. It is due to the decomposition of the picture in blocks
for the application of the Discrete Cosine Transform. The art of the compression
consists therefore to find the algorithms that insert an acceptable distortion, that is to say
imperceptible (or little visible) in the normal conditions of observation of the picture.
This topic has been studied since several years and many methods [17-21] have been
proposed to answer to the compromise that exists between the compression rate and the
distortion. Some of these algorithms are already standardized [22], [23], [4]. [5]. [12].
The compression with loss includes in the first stage a transformation, generally linear,
to remove the components redundancy of the signal. The quantization is applied in
second stage. This non-reversible step truncates the components precision and rounded
the low values to zero. The compression rate depends strongly on parameters of this
stage. The result of the quantization is finally coded. This third stage 1s conservative.

Input Linear : Entropy Compressed
uantifier e i
image [® transform Q encoder [ image

Figure 1 : the stages of the image compression with loss

5. The jpeg coder

The baseline JPEG coder [3-5] decomposes the initial picture in 8x8 blocks. Every
block is transformed by the DCT. This decomposition avoids the variable size DCT
application and the too important execution times. The expression of the DCT [24] is:

DCT()=—o-cl)ei)3; 3, .{x,},}m[ {Ex;?in}us[ (z;;})jn]

x=0 y=
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£l if k>0
Where Iy, is the pixels matrix of size NxN. A more efficient way to represent the

DCT is to use the matrix notation. The matrix definition of the DCT is the following:

DCT )= Cinp) @ Ty B Clr)
Where C, is the DCT matrix. It is defined as following:

o if i=0
JN

Catmiij)i=

P, o R
h 1|,'i| }»ZJ xcns[ {2-};}?1“ | if i>0

Where C ' is the transposed matrix of C. The DCT is applied on a square matrix
representing the values of the pixels, and restitute the coefficients associated to the
spatial frequencies. These coefficients are quantified. The quantization reduces the
number of bits necessary for the storage of the amplitude of every spatial frequency. It
is an important stage for the images compression. It introduces an unavoidable
distortion in the signal. The research of the quantifier that minimizes this distortion was
the object of several studies [25-26]. In the context of the measure of the distortion
introduced by the quantization, several functions have been proposed in the literature
[27-29]. However, the most used function is the one that measures the mean square
error. In our case, the quantization is done according to a matrix. This matrix remains
the same for all resulting blocks of the DCT. The basic idea is that the reduction of the
precision is more important when one moves away of the continuous coefficient of the
origin. The quality factor determines the difference between the adjacent strips of the
quantization matrix. Increasing the quality factor involves a decrease of the coefficients
precision, a more important compressions rates and a lower reconstruction quality. The
entropy coder constitutes the final stage of the compression. The continuous
components, which contain a significant fraction of the total image energy, are
differentially encoded. The rest of the matrix is ordered into the zigzag sequence [30]
and coded separately. Baseline coder use Huffmann and RLE coding [14].

94 RISTVol.14 n®02 Année 2004




. Transforms constitute a cutting edge technology for signal processing and
atly for image processing. It gives a new description of the spectral
n via the concept of scale [31]. In the framework of the analysis of the
als, the paper of Goupillaud and al. [32] is among the first to describe
he linear decomposition time-scale of a signal by wavelets. This concept is
-ibecause it is not about a classic transformation time-frequency but of a new
sm in which the basic operator acting cn the signal depends of the time and the
though the first use of the wavelets was the analvsis of the earth waves with a
on [32-33], one also uses them in quantum mechanics, in the survey of the
in analyses of sound, speech and cardiac signals [34]. In imagery, the
used mainly in compression, but other applications have been presented
ann and Morlet developed the mathematical formalism related to the
sforms in the beginning while using the language of the quantum mechanics
[37] proposes the discrete-time wavelets and leads to an orthogonal
ion that is assured by two quadratic mirrors filters. This transformation is
d relatively easy to put dawns. This allows several applications as the image
sion. Mallat [38] established the relation between the multi-resolution analysis
‘wavelet transforms. Daubechies [39-40] was the first to establish the link
0 discrete wavelet transforms and filterbank.
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To achieve a fine analysis, one uses increasingly small scales. It corresponds to the
highs frequencies, and the width of the temporal window decreases. So for the small
scales one has a good temporal precision and a weak frequency precision. On the other
hand, the analysis with big scales succeeded a good frequency precision and an
important temporal uncertainty. Therefore, this transformation offers a large range of
wavelets mothers letting the choice to the user according to the considered application
[41]. Two filters characterize the wavelet transforms: a high-pass filter related to the
mother function and a low-pass filter related to the scale function. At two dimensions,
these two filters are applied horizontally and wvertically. The resulting image is
composed of four quadrants: the first block, noted LL results from the application of the
low-pass filter horizontally and vertically. The second and the third blocks, noted HL
and LH result of an application of the high-pass filter according to a direction and the
low-pass filter according to the other direction. The last block corresponds to the
application of the high-pass filter according to the two directions.

LL LH

HL | HH

Figure 3 : decomposition of the image after an application of the filters

The elements of the first block are called approximations and concentrate the major part
of the energy of the signal. The three other blocks are constituted of details and include
the high frequencies and the noise. This procedure is applied in an iterative way on the

block of the approximations.

A3 |m3
np3| 2
DI
m o ow
n D1

Figure 4 : decomposition of the picture in three iterations
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rvey, we ‘are interested by the Haar wavelet and the Daubechies wavelets of
4. 10 and 20. We apply on the result of these transformations a truncation: this
e puts at zero the terms of the details lower then a threshold. The retained detail
e depends on this threshold.

runcation
ication, also called thresholding, eliminates the thinnest details of the picture.
the fact that it permits the suppression of the noise, it will assure a compression

ictures. We can code the picture with a reduced number of bits because we only
the most important wavelet coefficients. Two types of thresholding exist:

is the hard thresholding. It is the most "intuitive": it sets a threshold T>0 and 1t
serves the wavelet coefficients superior to T. The other coefficients are putted at

0 if |x|<T
'B[]'{h{x}=

X if 'xIET

'_5':1 15 the soft thresholding, it always puts at zero the coefficients lower then T.
superior to T, it attenuates their amplitudes by the value of the threshold in
p remove the noise effect even for the elevated values coefficients. In our survey,
the hard thresholding.

0 if |x|<T
EET} {X.:! =
x —sign (x ).T if [x|2T
Truncated Truncated
coefficient ‘. coeﬁ’icisn{
T Tf.-’,
= 11,
T ! -~ - g
17 it 1 T mitial
=T coefficient ,/ -T coefficient
Fa
(a) (b)

Figure 5 : hard thresholding (a) and soft thresholding (b)
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8. The Entropy encoder

THE RLE ENCODER

The Run Length Encoder or RLE includes a simple and fast algorithm. Its principle
consists to detect the information having a number of consecutive apparition and to
replace this sequence by three data: an identification character for the counter, the
counter that is the number of apparitions of the symbol to repeat and the symbol. The
identification character of the counter must not appear in the file source to avoid all

confusion when decoding.

THE HUFFMAN ENCODER
The Huffiman encoder is based on the reduction of the medium length of the coding _.:'
an alphabet. More the frequency of apparition of the symbol is important, more the
that is associated him is short. Moreover, every code cannot be the prefix of another
code. These two properties are assured by the use of the Huffman binary tree for the
assignment of the codes.

| s 0

P4(42)

1 0

P2(17)
1 0 1 0

‘PJ{’-;’ Fl(ﬂ

A(15) B(10) c {5} E(3)

Figure 6 : Example of the Huffman binary tree

The symbols A, B, C. D and E of the file source have the frequencies of appariti
respectively 15, 10, 9, 5 and 3. After application of the Huffman tree, the symbols A
C, D and E are coded respectively by: 11, 10, 01, 001, and 000.

We look for the frequency of apparition for each of the symbols of the file source
we classify them by order of decreasing probability. Every symbol constitutes a
node of the tree having a weight equal to the frequency of apparition (or probabili
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“occurrence). We refroup the two weakest weight nodes and we create a related node
having for weight the sum of the weights of the two son’s nodes. The related node is
“added to the list of the free nodes and the two son’s nodes are removed. One of the two
sons is designated to be the path took from the parent to code a bit 0; the other son is
associated to the bit 1. This procedure is repeated until it only remains one free node. To
determine the code of a given symbol, one browses the tree of Huffman from the root
until the symbol, while accumulating the bits at every passage by a related node.

THE ARITHMETIC ENCODER
The arithmetic coding is based on the fact that a compact interval on the set of the real
includes infinity of elements. This encoder doesn't replace each symbol of the file

source by a code, but replaces a stream of symbols by a real number included between 0
and 1.

eis: ST i paetineg i A7) 0.5 MEA0SERIT ) ok 0.40625
# #
A
/J H J.r'r
J" i £
0.5 a 0375 1 0.4375 J;‘ 390625
B ; \1\\ -r_-l'l‘l \\\\
na1s 0.3125 5 0.40625 NIRIRIZS ™
C “-;_““- \\\ \\\.
0 ~_| o023 S 0.375 | 0390625
B A & =

Figure 7 : Example of arithmetic coding

One looks for the code of the word “BACA™. To each of the three symbols A, B and C
of the source file, one looks for the probability of apparition, respectively 0.5, 0.25 and
0.25. The code of the word BACA is a real belonging to the interval
[0.390625,0.40625].

At the beginning, one associates to every symbol of the source file a sub-interval of the
interval [0.1]. The size of every sub-interval is proportional to the frequency of
apparition of the associated symbol. At the level of the first symbeol of the source file,
the encoder selects the correspondent sub-interval and gives out a real number included
in this last. At every apparition of a new source symbol, the encoder divides the
precedent sub-interval with identical proportions. select the new sub-interval and gives
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out a new real belonging to this sub-interval. At the end of the file source, the encoder
gives out the last real.

Theoretically, to code and to decode a stream of symbols by using the arithmetic coding
is not very complicated. Practically, it seems to be completely unfeasible. Most
computers support floating-point numbers of 80 bits. These 80 bits permit to code only
the messages of few symbols. The idea is therefore to use the integers of 16 or 32 bits
[42].

9. The images of test

We achieved our tests on four images of 256 grey levels, of different natures and

different sizes. The first is the image portrait (clown). It has a size of 320x200. The
second and the third image (Q1 and Q6) are medicals. They have the respective sizes of
480x435 and 480x418. The fourth image (S3) is synthetic. It has a size of 256x256.

Image Q 1
[320x200] [480x435]

Image clown

Image Q 6 [480x418] Image S3 [256x256]

Figure 8 :The images of test

11, The standards of evaluation

EVALUATION OF IMAGES

There is no perfect and universal metrics of the picture’s quality at the present time.

Indeed. the processes of evaluation of a human observer are currently unknown. One

can think that to establish a judgment, the observer makes call to an internal models of
representation of the content of the picture that he compares to the image brought by the
visual system. The quality can be defined according to the faculty of an observer to

make detection or an evaluation from the picture. On the other hand, the metrics of
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F
lity value the difference between an image reference and an image having

undergone a treatment. In the compressive phase, it is necessary to have a metrics of
fidelity to value the perceptible difference between the original picture and the
ﬂccnmpresscd picture in order to optimize the compression rate according to the
requisite quality. On the other hand, a metrics of fidelity must permit to value the
‘threshold of perception of the deteriorations according to the applications. Besides, it
provides a perceptible deterioration scale for the applications that are content with a
middle quality.

THE CLASSIFICATION OF THE FIDELITY

One can distinguish two fundamental classes of the fidelity: the first uses a certain
- number of metrics based on the punctual differences between the original picture and
- the treated picture [43]. Among the most known metrics of this class, one mentions the
Mean Square Error (MSE) and the Peak Signal to Noise Ratio (PSNR). Their main
advantage resides in their easiness of use. Indeed, they require no related information to
the conditions of visualization, they don't need any adaptation to the content of the
image and their calculation is simple. However, they cannot reflect the spatial variations
of the quality in the picture. The second class is oriented toward the model of vision
using some hypotheses related to the perception of the human visual system. They
provide satisfactory results when the deteriorations are near of the perception threshold.

THE DEFINITION OF THE ERROR
This measure is defined as being the report of the quadratic difference between the
original image Ag and the processed one Ap, by the energy of the original picture:

J 3.3 [Ao(m.n)-Ad(m.n)f

el

{33 nmat

Erreur=

Where M and N are respectively the number of lines and columns of the pictures
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THE PEAK SIGNAL TO NOISE RATIO
The PSNR is defined as follows:

SE

PSNR:&IIT}IG&{ Ll ]
It is expressed in decibel. S is the maximal intensity of the pixels. The Mean Square
Error MSE is defined as follows:

MSE = ﬁ ; “Z [ Aﬂ{m.n]—ﬁP{m?n}]E

MSE is the quadratic error between the original image Ag and the rebuilt image Ag.
This measure is the quadratic difference average on the set of the pixels of the image.
This measure can value the quality of the rebuilt image, but it depends strongly on the
scale of the grey levels of the picture.

11. Results
WAVELETS TRANSFORMS

EVALUATION OF WAVELETS AND COMPARISON OF DIFFERENT
TRUNCATIONS

We are interested by the survey of the behavior of the filters of Haar and those
Daubechies of order 2. 4, 10 and 20, applied to the four images of test. To evaluate
influence of the truncation of the coefficients of the details on the quality of

decibel for many thresholds. We give for each tested image the PSNR and the error a
compression by using the Haar, db2 and dbl0 filters; and this for some thresh

coefficients on the three matrixes of details.
The following figure presents the original image and the three truncated

limitation of the retained details at 30%, 1% and 0% respectively for Haar, dbi
db10.
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Haar: 30% of retained details Haar: 1% of retained details

db2: 30% of retained details

dbl10: 30% of retained details dbl{: 1% of retained details  db10: 0% of retained details

Figure 10 : The transformed images by the wavelet of Haar, db 2 and db10,

truncated by the limitation of the retained details at different thresholds
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The following tables and curves presents the value of the PSNR in decibel and the error
in percent, for the tested images, after compression by using a transformation by the
Haars filters, db2, db4. db10 and db20 for eight different retained details percentages:

Table 1 :The PSNR for the image clown

f

._ i 100% 40% 30% 20% 10% 5% 1% 0% |
i Haar 5’318_2?45_ 30,0553 | 30,0183 | 29,9897 | 29,7282 | 29,3905 | 28,568 | 27,1199
| db2 FQE{},Q?GSI 31.6347 | 31.6189 | 31,5527 | 31.2817 | 31,0084 | 29,6187 | 28,5003
db4 1255.84ﬂ4 32,1001 | 32,0748 | 31,9774 | 31,6005 | 31,0946 | 30,0667 | 29.1151 §
db1¢ |247.3701 | 32,3031 | 32,2801 | 32,1732 | 31,8008 | 31,309 | 30,084 | 29,27 ':.
‘ db20 ;241.8534 | 32,3258 | 32,3008 | 32,1939 | 31,7897 | 31,231 | 30,2292
Table 2 :The error for the image clown
£ 100% | 40% | 30% | 20% 10% | 5% 1%
If"lisar 3.16E-14 | 81502 | 8,185 | 82119 | 8463 | 8,7985 | 9,6724
‘ db2 ! 3.7E-12 | 6.7951 - 6.8075 | 6,8596 | 7.076%9 | 7,3032 | 8,5703
db4 | 4.18E-11 | 64406 | 6.4594 | 6,5323 | 6.822 7.231 | 8,1395
dbi® | 1.11E-10 6.2918 | 6,3085 | 6,3866 | 6,6664 | 7.0548 | 8,1233
db20 | 2.09E-10| 6,2754 | 6,2935 | 6,3715 | 6,6749 | 7,1184 | 79886
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THE DISCRETE'COSINE TRANSFORM

INFLUENCE OF THE QUALITY FACTOR ON THE RATE OF
COMPRESSION FOR THE DCT

To put in evidence the visual effects of the quantization on the images, we apply the
first two stages of the compression: the DCT and the quantization. on the image clown,
while assigning to the q quality factor the values 5, 10 and 25. The treated images will
present deterioration (Fig. 13):

Original image g=3

Figure 13 : Influence of the quality factor on the image clown

For the three quality factors (5, 10 and 25), the use of the RLE coder on the images tests
already studied (clown, medical Q1 and Q6) gives the following rates of compression:

BO%
78% 1
T6% 1
Td% 1t
72%
Tl b

B q=5 Hg=10 Oqg=25

Figure 14 : The rate of compression versus the quality factor

These results show that while applying the RLE coder to the three transformed images,
the rate of compression increases with the quality factor q. This observation is also valid
for the other coders studied. We note that the user doesn't have interest to increase the g
factor to a large extent to benefit from an elevated compression rate because the quality
of the image risks an important deterioration.

RIST Vol.14 n"02 Année 2004 107



12. Conclusion

We verify the compromise that exists between the compression rate and the quality of
the rebuilt image. Indeed, when we apply the wavelet transform, more we suppress
details, more the PSNR is weak and the error is important. We note also that the quality
of reconstruction is better as the order of the filter associated to the wavelets of
Daubechies increases. On the other hand, the computation time increases because the
filters become increasingly complex. When we apply the DCT, we verify that when the
step of quantization increases, the compression ratio increases at the detriment of the
quality of the picture rebuilt. We note also that for height compression and for very near
visual quality, wavelet transform leads to best compression rate. Inversely, the DCT
gives better results for the low compression rates.
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