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ABSTRACT 

We present a new plate bending triangular finite element. It is developed in perspective to building shell elements. Its 
formulation uses concepts related to the deformation approach, the fourth fictitious node, the static condensation and analytic 
integration. It is based on the assumptions of the theory of thin plates (Kirchhoff theory). The approach has resulted in a 
bending plate finite element (HIMEUR) competitive, robust and efficient. 
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1 INTRODUCTION 

Complex structures (shell) are frequently encountered in 
various fields. The development of simple and efficient 
finite element for the analysis of these structures is a major 
thrust of scientific research in solid mechanics. But 
problems are often encountered difficulty making the 
achievement of objectives. The major constraints observed 
are often linked: 

 Aspects of incompatible displacement fields when 
adding the membrane elements with those of 
plaque. 

 The phenomena of shear locking and membrane 
"shear locking" and "membrane locking". 

 The numerical problems induced by the absence of 
the "sixth DOF" in the case of co-planar elements. 

 The numerical problems associated with numerical 
integration. 

The objective of this research is, "the formulation of shell 
finite element formulation based on the deformation" whose 
purpose is to circumvent these difficulties one hand, and the 
construction of finite element shell simple and effective for 
the analysis of complex structures. To do this, we enriched 
our approach with the concepts and development 
techniques based on the adoption of the "deformation 
approach", introducing a "fictitious fourth node" in the 
triangular element whose degrees freedom of 
correspondents are subsequently eliminated at the 
elementary stiffness matrix by the technique of static 
condensation, the use of "analytic integration 'for 
evaluating the stiffness matrix. 

Early work [HIM08] led to the construction of triangular 
membrane finite elements can be combined easily with 
inflectional elements (slabs, beams and shells).  

These elements are: 

 "T3_Kteta" [HIM08], in which the unknown nodal 
rotation is obtained by adding to the stiffness 
matrix of "CST "(as expressed in strain) stiffness 
matrix associated with rotation around the normal 
(drilling rotation). Starting from the approach of 
[PRO00], this matrix "rotation" is obtained by 
minimizing the strain energy of rotation around the 
normal. 

 "T43" [HGM08] and "T43_Eq" [HIM08] are 
triangular finites elements with central node 
disrupted. They are characterized by the presence 
of unknown nodal rotation defined by derivation 
of displacement fields (drilling rotation). The 
interpolation functions are those used by Sabir 
[SAB85] for element "T43" and those obtained 
from equilibrium conditions for the element 
"T43_Eq" (dual harmonic polynomials selected 
from the solutions given by the development the 
Airy function [TEO82]). 

"T42"and "T42_Eq" [HIM08] that does not have an 
unknown nodal rotation, 

This work is a series of our research, focusing this time on 
the development of finite element triangular plate. The 
triangular finite element inflected with a fictitious fourth 
node based on the approach to deformation is the 
culmination of this work. We call it «HIMEUR». 
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This element is formulated using the approach to 
deformation. The interpolation functions of the deformation 
fields, therefore the displacements and stresses are 
developed using Pascal's triangle. It is a triangular element 
to which we added a fourth node dummy positioned outside 
and away from the triangle. This position, outside, is 
chosen to avoid the relaxation of the stiffness matrix 
resulting in an overestimation of the nodal displacements. 
The degrees of freedom corresponding to the fourth node 
are then eliminated by static condensation of the stiffness 
matrix at the elementary level. So the main interest of this 
fictitious node resides in the enrichment field trips (p 
refinement: increase in the degree of the polynomial 
interpolation), and is, therefore, greater precision in the 
approximation of the solution. The corresponding 
variational criterion is that of the total potential energy. The 
analytical integration for the evaluation of the stiffness 
matrix is highly attractive to avoid the loss of convergence 
phenomenon observed in isoperimetric elements (using 
numerical integration) that are very sensitive (their 
convergence is conditioned by a regular mesh - 
undistorted). The assumptions of this formulation are those 
of the thin plate theory (Kirchhoff's theory) by neglecting 
the transverse shear. 

To validate the new element HIMEUR, we tested a set of 
test cases. For each test case, the result is compared, first, to 
the corresponding reference solution, and secondly, the 
solution given by certain elements of thin plate located in 
the literature. Behaviour in pure bending (bending to the 
dominant shear) is processed through the example used by 
J.L. Batoz and Dhatt G. [BAT90]. This test is very useful to 
evaluate levels of convergence, robustness and performance 
of our element. The behaviour of this element relative to the 
transverse shear is analyzed using the example treated 
Guenfoud [GUE93] Belarbi and Sharif [BEL99]. Finally 
we submitted our element tests proposed by Robinson 
[ROB78] to gauge their behaviour to aspects of torsion. 

Generally, the approach in our development has resulted in 
a plate finite element (HIMEUR) competitive, robust and 
efficient. This appears, first, through his excellent pace of 
convergence towards the reference solution, and secondly, 
through the performance of his behaviour towards other 
triangular plate elements in the existing literature: DKT, 
HCT [BAT90], CO [BEL84], and ANST3 ANST6 
[GUE90], TRUMP (Argyris) and SRI [SAB00]. 

 

2 BASIC EQUATIONS OF THE THEORY OF 
THIN PLATES (KIRCHHOFF THEORY) 

2.1 Kinematics equations 

In figure 1, the rotations around the two axes x and y is 
denoted θx and θy and slopes in both directions are defined 
by the variables βx and βy, with: 

x y 
     y x  

 (01) 

 

 
Figure 1 : Deformation of a plate bending (Kirchhoff Theory) 

 

The assumption of the cross section implies a linear 
variation of displacement over the thickness of the plate. 
This translates into: 

( , , ) ( , ) ( , ),x yu x y z z x y z x y  
  

( , , ) ( , ) ( , )y xv x y z z x y z x y   
 (02) 

The expressions (02) can decouple the displacement fields 
(u, v) that of the arrow (w) which is in reference to the 
assumptions of Kirchhoff, the only field to define the 
behaviour of the plate. Thus, the displacements are given 
by: 
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And rotations are given by: 
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The infinitesimal strain tensor is then: 
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Moments related to the curvatures are given by: 
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2.2 Kinematics compatibility conditions 

These conditions were established by St. Venant (1854) 
[FRE98]. Their satisfaction is required to guarantee the 
uniqueness of the displacements. The compatibility 
equations are as developed as follows: 
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2.3 Constitutive law 

In plane state of stress and for isotropic materials, generally 
accepted hypothesis for the calculation of thin structures 
(beams, plates and shells), the constitutive law is written: 
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This translates in terms of relationship “moment-curvature» 
by the following equation system: 
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2.4 Equations of equilibrium 

The balance of an element of dimensions dx × dy is 
obtained by the balance of forces of internal and external 
actions.
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Where, Qx and Qy are the shear forces in the sections 
perpendicular to the axes x and y respectively. The 
expression (10) is simplified to give: 
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The balance of moments about the axes x and y gives: 
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By replacing the Qx and Qy values of equations (11) and 
(12) in relation (09), the equilibrium condition would result 
in the displacement function "w" by the following 
expression: 

4 4 4

4 2 2 4
2 0

w w w q

Dx x y y

  
   

   
 (13)  

With 

3

212(1 )

Eh
D





 

 

3 FORMULATION OF THE ELEMENT 
"HIMEUR" 

3.1 Shape function 

For rigid body motions (MCR), bending moments are 
related to zero: 

xK 0     yK 0    xyK 0  (14) 

By replacing in equations (06) the curves with their values 
given by equations (14) and after integration, we obtain the 
displacement fields representing the rigid body motions 
which are as follows: 

1 2 3 2 3W a  - a .x-a ax yy a     (15) 

With a2 and a3, parameters representing rotations θx and θy 
of the rigid body about respective axis "y" and "x" 
representing the translation and a1 (arrow) of the rigid body 
along the normal (axis "z") . 

Our element has four nodes (three vertices which we have 
added a fourth dummy node). Each of its nodes has three 
degrees of freedom. So the displacement fields, formulated 
by the use of the model deformation, have 12 independent 
constants (a1, .., a12). The first three (a1, a2, a3) are used in 
equations (02) to represent rigid body motions. The other 
nine (a4, a12) are used to represent the state of pure bending. 
They are divided into the deformation interpolation 
functions to satisfy the equations (07) of kinematics 
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compatibility for plane elasticity. Thus, the deformation 
fields for the higher modes are derived from Pascal's 
triangle as follows: 

x 4 5 6 7 8 9 10 11K a a .x a a a x ayy a xyK y a xy       
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By replacing in equations (06) the curves with their values 
given by equations (16) and after integration, we obtain the 
following field trips: 
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The final field of displacements is obtained by adding the 
relations (15) and (17): 

2 3

1 2 3 4 5

2 3 2 2

6 7 8 9

3 3

10 11 12

2 2

2 4 5 6 7

2 3

9 11 12

2 3

3 6 7 8 9

2 2

10 11 12

 
2 6

2 6 2 2

6 6 2

.
.  . .

2 2

2 6 2

. . .
2 6

.

2 2 2

x

y

x x
W a a x a y a a

x y x y y xy
a a a a

y xy xy
a a a

x x y
a a x a a x y a

y y y
a a a

x x
a a a a y a x y

y x y x
a a a





    

   

  

    

  

    

  

 (18) 

Matrix form the displacement field given by equations (18) 
reads as follows: 
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Knowing the nodal coordinates (xi, yi) corresponding to the 
nodes j (j = 1... 4) and applying the relation (20) the vector 
of nodal displacements at the elementary level, is given as 
follows: 
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 is the matrix of nodal coordinates. Its 

matrix form is developed in the appendix. 

From equation (21), we deduce the value of parameters "ai" 
which are given by the system of equations: 

   1 e
ia [A] q  (22) 

By replacing the parameters have the relationship given by 
(22) in the equation system (3.6), we obtain the 
relationship: 
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which represents the matrix of interpolation functions Ni. 
By replacing in equations (06), w(x,y) values of equation 
(19), the relationship strain - displacement takes the 
following expanded form: 
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Thus, the deformation matrix is given as follows: 
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 
2 2

0 0 0 1 . 0 0 0 0 0

Q(x,y) 0 0 0 0 0 0 0 1 . 0

0 0 0 0 0 2. 0 2. 0 1

x y xy

x y xy

x x y y

 
 

 
 
  (25) 

 

3.2 Elementary stiffness matrix 

The internal virtual work, elementary discredited is given 
by the expression: 
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And replacing in the expression (26),  ε  and  σ  , their 

values given respectively in equations (27) and (28) yields: 
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Thus, the elementary stiffness matrix derived from the 
expression (29) is as follows: 
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The evaluation of the expression 
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analytic integration of the various components of the 

resulting matrix product    T
Q(x.y) [D]. Q(x.y) .  whose 

expressions take the form " . .xH C x y 
   ". The matrix 

[Ko] on the element "HIMEUR" is appended. So the matrix 
[Ko] is evaluated by analytical integration of 

values . .x

x y x y

H C x y 
      . Finally, the elementary 

stiffness matrix to be considered at the assembly and 
construction of the global stiffness matrix of the structure is 
obtained after condensation of the matrix [Ke]. The static 
condensation on the degrees of freedom, concern the 
fictitious fourth node. 

 

4 Validation of the element "HIMEUR" 

4.1 Console-beam subjected to point load at its free end 

This test checks the behaviour of our simple bending 
element based on the slenderness ratio (L/h). Indeed, in this 
case the bending test before the shear is dominant for ratios 
L/h rates. At the free end, the beam is subjected in the 
direction "Oz" to A point load of intensity P = 0.1. It 
simulates a perfect fitting to the other end (see Figure 2). 

 

z 

x 
L 

b 

P 

A 

 

Figure 2 : Console-beam subjected to point load 

 

Geometric data and mechanical loading are given in 
Table.1. 

 

Table.1: geometric and mechanical loading data for the beam in 
simple bending 

Length L=10.0 

Width b=1.0 

Thickness h= (L/100 ≈ L) 

Young's modulus E=1.2x106 

Poisson ν  = 0.0 

Loading P=0.1 

 

To see the influence of transverse shear on the behaviour of 
our element, we simulate in this test case, the displacement 
"w" from point "A" under the direction of "Oz" for several 
values of the ratio L/h. We then compare the results, first to 
the theoretical solution given by (4.1) of the beam theory 
and on the other hand, the behaviour of other triangular 
elements treated Guenfoud DSTM, ANST6, DKTM 
[GUE93]. The theoretical solution of the displacement "w" 
from point "A" in direction "Oz" is given as follows: 
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The simulation results point "A" in the direction "Oz" is 
given in Figure 3 and Table 2. 
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Table 2: Displacement from point A along the axis "Oz" console 
of the beam in simple bending 

L/h DSTM ANST6 DKTM HIMEUR 
Theoretical 

solution 

1 5.1x10-7 5.3x10-7 3.1x10-7 3.3x10-7 5.3x10-7 

2 2.9x10-6 3.0x10-6 2.5x10-6 2.7x10-6 3.1x10-6 

3 9.0x10-6 9.6x10-6 8.4x10-6 9.0x10-6 9.6x10-6 

4 2.0x10-5 2.2x10-5 2.0x10-5 2.1x10-5 2.2x10-5 

5 4.0x10-5 4.2x10-5 3.9x10-5 4.1x10-5 4.3x10-5 

10 - - - 3.3x10-4 3.3x10-4 

100 0.31329 - 0.31327 0.33303 0.3333 
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Figure 3 : Normalized Displacement of point A in pure bending 

 

Figure 3 shows, in graphic form, the standard displacement 
of point "A" in simple bending function of the ratio L/h and 
comparing the behaviour of the element HIMEUR from the 
theoretical benchmark solution. We note that our element is 
very efficient for large slenderness (L/h> 10). It should be 
noted that its convergence to the solution is obtained with a 
mesh consisting of ten (10) elements. Table 2 also 
summarizes the results given by other existing triangular 
elements. We note here also that our element is robust to 
the elements DSTM, DKTM [GUE93] especially for L/h> 
3, since its behaviour is closer to the theoretical benchmark 
solution. Since it is very competitive with the element 
ANST6 [GUE93]. 

 

4.2 Isotropic square plate 

This example was taken by many authors in the literature 
including [BAT90]. This is an isotropic square plate of side 
a and thickness h. In this work we simulate several 
scenarios based on the boundary conditions of the plate and 
the type of loading. It is in this test case to study the 
behaviour of the element HIMEUR considering different 
mesh sizes and several reports "a/h ".  

 z 
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P 

 

Figure 4 : isotropic square plate subjected to point load applied at 
its centre 

 

The results concerning the displacement "w" the central 
point (C) of the plate is compared to analytical solutions for 
thin plate' s for each case. As we proceed with comparisons 
with triangular elements in the existing literature, including 
elements SRI [SAB00], CO [BEL84], TRUMP (Argyris), 
DKT [BAT90]. 

 

4.2.1 Isotropic square plate requested by a point load applied 
at its centre 

4.2.1.1 . Isotropic square plate simply supported on all four 

sides 

Geometric and mechanical data are given in Table 3. 

 

Tableau 3: geometric, mechanical and loading data for isotropic 
square plate 

Length a = 2.0m 

Thickness h= 0.03m 

Young's modulus E=210x109N/m² 

Poisson ν  = 0.3 

Loading P= 800 N 

 

The theoretical solution of the displacement "w" from point 
"C" along the direction of "Oz" is given by [BAT90] as 
follows: 

D

aP
wt

2.
.0116.0     with    

)1(12

.
2

3




hE
D  (33) 

 

The results of the displacement of point "C" following 
direction "Oz " with different meshes are shown in Figure 5 
and table 4. 
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Figure 5 : Displacement "W " Point C - isotropic square plate, 

simply supported on all four sides, with concentrated 
load at point C – 

 

Table.4: Normalized Displacement "Wp / Wt" Point C - isotropic 
square plate, simply supported on all four sides, with 
concentrated load at point C - 

Mes
h 

4 x 4 6 x 6 8 x 8 
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Figure 5 shows, in graphic form, displacement from point 
"C" with different meshes. We note the good performance 
of our element, since it converges rapidly towards the 
analytical solution of reference. 

 

 

 

 

Table 4 also includes the values of the normalized 
displacement "Wp/Wt" of point C of some elements of 
triangular thin plate, for different meshes and several 
reports "a/h" and highlights the quality of results obtained 
by the element HIMEUR to these elements. Again this 
element is more robust to the elements SRI [SAB00], CO 
[BEL84], TRUMP (Argyris), whatever the mesh or the 
ratio "a/h" and very competitive with the DKT element 
[BAT90]. 

 

4.2.1.2 4.2.1.2 Isotropic square plate clamped at its four 

sides 

We resume the test case for this example in Figure 3 with 
the same geometrical and mechanical data of the material, 
but simulating a perfect fitting of the plate on all four sides. 
The theoretical solution of the displacement "w" from point 
"C" along the direction of "Oz" is given by [BAT90] as 
follows: 

    
D

aP
wt

2.
.0056.0     with    

)1(12

.
2

3




hE
D               

 (34) 

The results of the displacement of point "C" following 
direction "Oz" with different meshes are shown in Figure 6. 
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Figure6: Displacement"W"Point - isotropic square plate clamped 

at its four sides, with concentrated load at point C – 

 

The Figure 6 shows, graphically, the displacement from 
point "C" with different meshes. Just as the previous test 
cases, our element present, there is also a good 
performance, since it converges rapidly towards the 
analytical solution of reference. 

 

4.2.2 Isotropic square plate requested by a uniformly 
distributed load 

We resume for this test case the sample plate of Figure 3 
that we are seeking a uniformly distributed load of intensity 
q=60 T/m². 
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Figure 7: isotropic square plate subjected to a uniformly 
distributed load. 

 

The theoretical solution of the displacement "w" from point 
"C" along the direction of "Oz" is given for the case of a 
plate simply supported by the formula (35) and for the case 
of the plate embedded in the formula (36): 

D

aq
wt

4.
.004062.0  

With            
)1(12

.
2

3




hE
D

 (35) 

D

aq
wt

4.
.00126.0  

With           

)1(12

.
2

3




hE
D

 (36) 

The simulation results of displacement of point "C" 
following direction "Oz" with different meshes are shown 
in Figures 8 and 9. Figure 8 summarizes the results for the 
case of a plate simply supported and those relating to Figure 
9 the plate clamped along its four sides. We note that for 
both test cases, our element behaves well, since it is 
characterized by rapid convergence to the analytical 
solution. 
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Figure 8: Displacement 'W' Point C - isotropic square plate simply 

supported on all four sides with a uniformly 
distributed load – 
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Figure 9: Displacement "W" Point C –- Isotropic square plate 

clamped at its four sides, with a uniformly distributed 
load – 

 

4.3 Skew isotropic plate 

It is for this test, a plate of isotropic skew (angle 60 °) 
(Figure 10) subjected to a uniform load p with two simple 
supports (W = 0) and two free edges. Geometric and 
mechanical data are given in Table 5.  

 

 

Table 5: geometric and mechanical data for the isotropic skew 
plate (60 °) 

Side length L = 100.0  

Thickness h= 0.1 

Young's modulus E=1000 

Poisson ν  = 0.31 

 

This problem treated by [BAT90] for the analysis of 
quadrilateral elements and DSQ Q4γ is used to evaluate the 
convergence of our element. To do this we considered grids 
of 2x2, 4x2, 8x2, 16x2 elements per side. The reference 
solution, obtained by a finite difference scheme [RAZ73], is 
given by formula 37. 

D

LP
wref

2.
.007945.0  

With                

)1(12

.
2

3




hE
D

 (37) 
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Figure 10: isotropic skew plate (60 °) with free edges 

 

The results of displacements obtained by the element 
HIMEUR are illustrated by the Figure 11. We've also worn 
for purposes of comparison, the results given by the 
elements and quadrilateral DSQ Q4γ [BAT90]. We observe 
a monotonic convergence for all three items with a 
convergence at the top of the element "HIMEUR". 
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Figure 11 : Displacement normalized "Wp / Wref." the central 

point - isotropic skew plate with free edges- 

 

4.4 Tests ROBINSON 

There are two tests proposed by Robinson [ROB78] to 
study the behaviour of a triangular element loaded in 
bending and torsion constrained. 

 

z

x

L

1.0 

W

B

A

1

1.0 

x 

z 

L 

1.0 

W

B

A

1.0 

1.0  

A - 12.1 - bending constrained       B - 12.2 - twisting constrained 

Figure 12: Console-beam subjected to tests ROBINSON 

 

The geometrical and mechanical characteristics of the 
material are given in Table 6. We study the influence of the 
ratio L/h (the length varies from 1 x h to 10000 x h) on the 
move "W" from point "A" for both types of solicitations. 

 

Table6: geometric, mechanicalmaterial for the beam-console 
submitted to test ROBINSON 

Side length L = Variable  

Width b=1.0 

Thickness h= 0.05 

Young's modulus E=1.0x107 

Poisson ν  = 0.25 

 

Test "A" for the behaviour of the beam-console under the 
action of two pairs My = 1.0 applied to the nodes of its free 
end. This is the bending constrained. Test "B" for the action 
of two concentrated loads Pz =- 1.0 and Pz = 1.0 
respectively applied to the same nodes. This is the twisting 
constrained. The reference solution (BENCHMARK) on 
triangular elements is extracted from [GUE90]. 

 

Table 7: Test "A" – Bending constrained - displacement "W" from point "A" 

L ANST3 ANST6 HCT DKT HIMEUR BENCHMARK 

0.05 0.00000174 0.0000064 - - 0.000008022 - 

0.5 0.00087300 0.0011800 - - 0.00092053 - 

1 0.00356000 0.0038100 0.0010520 0.002105 0.00235240 0.0028 

2 0.00935000 0.0100000 0.0015790 0.006580 0.00614230 0.0056 

3 0.01480000 0.0162000 0.0010520 0.009870 0.00938960 0.0084 

4 0.02020000 0.0222000 0 0.013160 0.01215900 0.0112 

5 0.02550000 0.0280000 -0.0052600 0.016450 0.01477200 0.0140 
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6 0.03070000 0.0339000 -0.0018420 0.019740 0.01735700 0.0168 

7 0.03600000 0.0397000 - 0.023030 0.01995100 0.0196 

8 0.04120000 0.0455000 -0.0028940 0.026320 0.02256200 0.0224 

9 0.04600000 0.0513000 - 0.029620 0.02518800 0.0252 

10 0.05170000 0.0571000 -0.0044730 0.032900 0.02782800 0.0280 

11 - - - 0.036190 0.03047800 0.0308 

12 - - -0.0057890 0.039480 0.03313700 0.0336 

25 0.12970000 0.1433000 - - 0.06805900 - 

50 0.25970000 0.2869000 - - 0.13567000 - 

500 2.59850000 2.6540000 - - 1.35530000 - 

 

Table 8: Test "B" - Twisting constrained   - displacement "W" from point "A" 

L ANST3 ANST6 HCT DKT HIMEUR BENCHMARK 

0.05 0.00000116 0.00000383 - - 0.00000100 - 

0.5 0.00043800 0.00088300 - - 0.00045531 - 

1 0.00178000 0.00252000 0.0010660 0.001866 0.00186770 0.002666 

2 0.00467000 0.00555000 0.0024000 0.004400 0.00550220 0.005333 

3 0.00743000 0.00847000 0.0030660 0.006800 0.00840630 0.007999 

4 0.01010000 0.01130000 0.0034660 0.009200 0.01095800 0.010666 

5 0.01270000 0.01420000 0.0037330 0.011733 0.01344500 0.013333 

6 0.01540000 0.01710000 0.0042666 0.014000 0.01593200 0.015999 

7 0.01800000 0.02000000 - 0.016400 0.01842900 0.018666 

8 0.02060000 0.02290000 0.0050660 0.018933 0.05093700 0.021333 

9 0.02320000 0.02570000 - 0.021333 0.02345500 0.023999 

10 0.02580000 0.02860000 0.0061330 0.023600 0.02598100 0.026666 

11 - - - 0.025866 0.02851200 0.029333 

12 - - 0.0070660 0.028266 0.03104700 0.031999 

25 0.06489000 0.07170000 - - 0.06419500 - 

50 0.12986000 0.14350000 - - 0.12817000 - 

500 1.29930000 1.43270000 - - 1.28090000 - 

 

Tables 7 and 8 and Figures 13 and 14 show the 
displacement "W " from point "A " according to the ratio 
L/h and comparing the behaviour of the element HIMEUR 
compared to the reference solution (BENCHMARK ) and 
the results given by other existing triangular elements 
ANST3 [GUE90] ANST6 [GUE90], HCT, DKT [BAT90]. 
The detailed study of the results highlights the good 
performance of the element HIMEUR. Indeed the results 
achieved are very close to the reference solution for both 
constrained for bending torsion constrained and this 
regardless of the length "L". It should be noted that this 
result is obtained with a moderate mesh consisting only of 
four triangular elements. Moreover, the element HIMEUR 

appears stronger than all the elements taken as a basis for 
comparison, although the element DKT for the situation 
constrained bending and to a lesser extent the ANST3 
element for the situation of twist embarrassed him are 
competitive. Figures 7 and 8 illustrate graphically these 
findings. 
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Figure 13: Test "A" - Bending constrained - displacement "W" 

from point "A" 
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Figure 14: Test "B" - Twisting constrained - displacement "W" 
from point "A" 

 

5 Conclusion 

We presented in this work a finite element triangular 
inflected perspective of linear static analysis and dynamic 
analysis for nonlinear geometric structures curves (arcs and 
shells). The approach, concepts and development 
techniques used have resulted in a finite element 
competitive, robust and effective for the treatment of thin 
plates. It remains to continue his maturation into a reliable 
and efficient tool to address the calculation of all situations 
of shells, from thin to thick, deep or low loaders. This is 
something that has certain advantages which advocate their 
use. The presence of the fictitious node and the adoption of 
the approach "deformation" have the opportunity to enrich 
the displacement field, thus greater accuracy in the 
approximation of the solution, avoiding the complexity of 
the classical theories . The reduction of elementary stiffness 
matrices by the technique of static condensation, "Action on 
the degrees of freedom relating to fictitious node, avoiding 
systems of equations to be solved, enormous, thus saving 
time machine not negligible . The use of analytical 
integration in the evaluation of the stiffness matrix, gave 
our element behavior performance. This result was 
remarkable in the convergence tests carried out where we 
are seeing a rapid trend towards the solution unlike 
isoperimetric elements (using numerical integration). 

 

 

 

REFERENCES BIBLIOGRAPHIQUES 

[1]  [BAT80] Batoz J. L., Bath KJ, Ho L.W., A study of 
three node triangular plate bending elements. Int. J. 
Num. Meth. Eng. 1980;15:1771-812. 

[2] [BAT90] Batoz J. L., Dhatt G., Modélisation des 
structures par éléments finis, vol.1, Solides Elastiques, 
Vol 2 : Poutres et plaques,  Hermes, Paris, 1990, 
Volume 1, 455 pages, Volume 2, 483 pages. 

[3] [BEL99] Belarbi M. T., Charif A. Développement 
d'un nouvel élément hexaédrique simple basé sur le 
modèle en déformation pour l'étude des plaques 
minces et épaisses, Revue européenne des éléments 
finis, 1999 pp 135-157. 

[4] [BEL00] Belarbi M. T., Développement de nouveaux 
éléments à modèle en déformation : Application 
linéaire et non linéaire, Thèse de Doctorat, Univ. 
Constantine (Algérie), 2000. 

[5] [BEL84] Belytschko, T. ONG, J.S.J., LIU, 
WK.,KENNEDY, J.M., Hourglass control in linear 
and nonlinear problems,  Compute methods in applied 
mechanics and engineering, 1984, Vol 43, pp 251-
276. 

[6] [CLO65] Clough R.W. & Tocher JL.., Finite element 
stiffness matrixes for analysis of plate bending, 
Proceeding of first conference Matrix methods in 
structural mechanics, Wright-Pattersonm Qir force 
bqsem Ohiom 1965. 515-812. 

[7] [FRE98] François Frey, Traité de génie civil de 
l’école polytechnique fédérale de Lausane – Volume 3 
– Analyse des structures et milieux continus – 
mécanique des solides, Presses polytechniques et 
universitaires romandes CH-1015, 1998. 

[8] [GUE90] Guenfoud  M., Deux éléments triangulaires 
nouveaux pour l'analyse linéaire et non linéaire 
géomètrique des coques, Thèse de doctorat, Institut 
national des sciences appliquées de Lyon (France),  
Novembre 1990, 346p 

[9] [GUE93] Guenfoud  M., Présentation de l'élément 
DSTM pour le calcul linéaire des coques d'épaisseur 
quelconque, Ann. l'ITBTP, 1993; 515: 25-52.  

[10] [HIM08] Himeur M., Développement d’éléments 
membranaires nouveaux d’élasticité plane basés sur la 
formulation en déformation, Thèse de magistère, 
Université de Guelma (Algérie), Département de 
Génie Civil, Novembre 2008, 104p 

[11]  [HGM08] Himeur M. & Guenfoud M., Elément fini 
triangulaire nouveau à noeud central perturbé en 
formulation déformation avec drilling rotation, 
CIFMA’03, 21-23 April 2008, Alep, Syrie 

[12] [IBR93] Ibrahimbegovic A., et Frey F. et Rebora B., 
Une approche unifiée de la modélisation des structures 
complexes : les éléments finis avec degré de liberté de 
rotation, LSC, Rapport Interne 93/10, Ecole 
polytechnique fédérale de Lausanne (Suisse), Juin 
1993. 

[13] [PRO00] Providas E. and Kattis M. A., An assessment 
of two fundamental flat triangular shell elements with 
drilling rotation, Computers and structures 77,  pp 
129-139, 2000. 



M. Himeur & al. 

 58

[14] [RAZ73] Razake A., Program of triangular bending 
elements with derivative smo0thing, IJNME, Vol. 6, 
p. 333-343, 1973. 

[15] [ROB78] Robinson J.., element evaluation. A set of 
assessment points and standards tests Proc. Element 
method in the commercial environment, Vol. 1,  pp 
217-248, Oct. 1978. 

[16] [SAB83] Sabir A.B., A new class of finite elements 
for plane elasticity problems, CAFEM 7th, Int. conf. 
Struct. Mech. In reactor Technology, Chicago, 1983. 

[17] [SAB85]  Sabir A.B., A rectangular and triangular 
plane elasticity element with drilling degrees freedom, 
chapter 9 in proceeding of the 2nd International 
conference on variational methods in engineering, 
Southampton University, Springer verlag, Berlin, 
1985, pp 17-25. 

[18] [SAB95]  Sabir A.B., A Sfendji, Triangular and 
Rectangular Plane Elasticity Finite Elements, Thin-
Walled struct., 21-1995, pp 225-232. 

[19] [SAB00]  Sabourin F.m Salle F., Calcul des structures 
par éléments finis, Barres – Poutres Elasticité plane 
Axisymétrique Plaques – coques non linéarité, 
Chapitre IV,  INSA Lyon, 2000, 17 pages. 

[20] [SAR91] Jean-Luc SARF, La condensation statique 
dans felina (nouvelle édition), Rapport Interne LSC 
91/22, 1991. 

[21] [TEO82] Teodorecu Paul, Grands éléments 
finis”GEF” pour l’élasticité plane, Thèse n° 462 de 
doctorat présentée au département de génie civil, 
Ecole polytechnique fédérale de Lausane Suisse, 1982 

[22] [YUA88]  Yuan F.,Miller RE., A rectangular finite 
element for moderately thick flat plate, 
Computer.Struct.1988;30:1375-87. 

 

 

 

 

 

 



Bending triangular finite element with a fictitious with a fictitious fourth node based on the strain approach.   

 59

Appendices 

A.1. Matrix of nodal coordinates 
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 A.2. Matrix [ Ko ] 

 

- General form 
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- Expanded form before analytic integration 
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- Expanded form after analytic integration 
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with :    dydxYXH .
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