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ABSTRACT 

The present research focuses on hydraulic jumps of initial and final depths h1 and h2, 

respectively, controlled by a broad-crested sill of height s in a horizontal rectangular 

channel. The main objective is to know which parameters influence the height of the sill 

in such a way as to create a full hydraulic jump on the stilling basin. First, the study 

reviews the essential works of Forster and Skrinde published in 1950, which are still in 

force today. An in-depth study of these works shows that the theoretical development 

carried out by the aforementioned authors is based on two simplifying assumptions that 

risk compromising the reliability of the derived equations, in particular, that govern the 

relative sill height S = s/h1, as a function of the incident Froude number F1. A detailed 

and appropriate calculation shows that this relationship is not recommendable and 

therefore requires an adjustment. 

For this, a much more rigorous theoretical development is proposed, which leads to 

establishing a surrogate relationship safely allowing the explicit calculation of the relative 

sill height value required for the formation of the hydraulic jump on the stilling basin. 

Contrary to what has been proposed by previous studies, the current theoretical 

development takes into account the effect of the approach flow velocity immediately 

upstream of the sill.  

This effect is represented by the dimensionless parameter  defined as a kinetic factor. 

The calculation showed that for a wide range of incident Froude numbers, the kinetic 

factor cannot be neglected. A table comparing the values of the relative sill height S 

calculated according to Forster and Skrinde and the current approach shows that the 
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maximum deviation observed for   0 is significant, reaching 26.15% for F1 = 3 and 

8.41% for F1 = 11. If the effect of the approach flow velocity was to be neglected, which 

corresponds to  = 0, the maximum deviation could reach 5%, which is not insignificant. 

The second part of the study is devoted to the experimental investigation. It has the main 

objective of corroborating or correcting the theoretical relationships developed during the 

first part. For this, a specially designed easy and efficient hydraulic installation is put into 

operation, highlighting an original device generating an incident flow of high velocity. It 

consists of a pressurized box-convergent assembly directly fed by a pump via a flexible 

pipe. 

The analysis of the experimental measurements shows that the theoretical sequent depth 

ratio Y of the hydraulic jump, according to Belanger’s equation, is not affected by the 

setup of the broad-crested sill. Everything happens as if the sill does not exist. Thus, it 

seems that the sill is only useful in controlling the position of the hydraulic jump such 

that it forms completely on the horizontal apron.  

Moreover, the accuracy of the new rigorous derived theoretical relationship S(F1) is 

experimentally confirmed. 

Keywords: Forster and Skrinde, Broad-crested sill, Control of hydraulic jump, 

Horizontal apron, Kinetic factor.  

INTRODUCTION 

Many hydraulic structures, such as shaft spillways or surface spillways, evacuate water 

and return it further downstream in the water stream. This evacuation results, in most 

cases, in the transformation of the potential energy stored by the reservoir into strong 

kinetic energy upstream of the release structure. The generated erosive forces, which are 

proportional to the square of the velocity, can seriously threaten the structure by their 

strongly erosive nature, and it is then often required to dissipate this kinetic energy in the 

greatest possible proportion. At the entrance to the release structure, the flow is in a 

supercritical regime characterized by an incident Froude number greater than unity. The 

principle of dissipation consists of transforming this supercritical regime into a subcritical 

regime characterized by low velocities downstream of the structure known as an "energy 

dissipator" or “stilling basin”, i.e., a device designed to protect downstream areas from 

erosion by reducing the velocity of flow to acceptable limits. A hydraulic jump then arises 

over the entire length of the stilling basin, often rectangular in shape and sometimes 

equipped with obstacles such as baffles and continuous or toothed sills, deliberately 

placed according to the width of the basin.  

The purpose of the sill is to prematurely cause the formation of the hydraulic jump and to 

control its position during flow rate changes so that it does not move either upstream or 

downstream of the stilling basin. Hydraulic jumps controlled by sills were first studied in 

rectangular channels before being extended to other channel profiles, such as triangular 
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channels and U-shaped channels (Forster and Skrinde, 1950; Hager and Li, 1992; Achour 

et al., 2002; Achour and debabèche, 2003a; Achour and Debabèche, 2003b). On this 

subject, Peterka (1983) compiled an excellent monograph describing the various types of 

stilling basins encountered in hydraulic engineering practice. 

Almost a decade later, Nandana and Ayed (1992) improved the performance of the type 

III stilling basin, following the USBR classification, and provided a new design method. 

The tested basin, called modified type III, has an additional row of toothed sills, and the 

distribution of velocities in the subcritical flow downstream of the hydraulic jump is thus 

improved.  

The hydraulic jump originating in a basin equipped with one or more sills, continuous or 

discontinuous, is said to be controlled (Forster and Skrinde, 1950) and sometimes even 

forced (Bretz, 1988), as opposed to the classic jump formed on a horizontal apron of 

rectangular cross-section and devoid of any obstacle (Hager et al., 1990). This type of 

jump is often referred to in the literature as "A jump" (Bretz, 1988).  

The main characteristics of a classical or controlled hydraulic jump are the yield or the 

efficiency represented by the ratio of the total head loss they cause to the total head in 

their initial section, their characteristic lengths and their initial and final depths. From a 

quantitative point of view, the characteristics of the hydraulic jump essentially depend on 

the geometry of the stilling basin, the incident Froude number and the relative sill height 

S = s/h1 in the case where the hydraulic jump is controlled or forced; s and h1 represent 

the sill height and the initial depth of the hydraulic jump, respectively (Bretz, 1988; 

Achour 1997). 

For economic and efficiency reasons, the hydraulic jump must extend over a shorter 

length; that is, the basin must be compact, provide the smallest possible final downstream 

height and finally dissipate the maximum amount of energy (Hager and Li, 1992; Bretz, 

1988). 

The study carried out by Hager and Wanoschek (1987) shows that, for a given value of 

the incident Froude number, the hydraulic jump in a triangular channel is characterized 

by greater efficiency and by a lower sequent depth ratio Y = h2/h1 than that of the hydraulic 

jump evolving in rectangular and trapezoidal channels, where h2 is the final depth of the 

hydraulic jump. The literature shows, however, that the interest of research workers has 

focused essentially on the hydraulic jump evolving in a rectangular channel, no doubt 

because of the geometric simplicity of such a structure and its ease of implementation 

both from practical and experimental points of view. 

All studies on the hydraulic jump have confirmed that it is governed by the momentum 

equation, although the velocity distribution is not uniform downstream of the hydraulic 

jump, i.e., immediately upstream of the sill. Apart from a few studies, such as that of 

Smith and Chen (1989) for the hydraulic jump in a steeply sloping square conduit, the 

study of McCorquodale and Mohamed (1994) on the hydraulic jump on an adverse slope, 

that of Kawagoshi and Hager (1989) on the B-jump in a sloping channel, or that of Achour 

(Achour, 1997; Achour, 2000) related to the hydraulic jump in a suddenly widened 
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circular tunnel, the application of the momentum equation essentially concerned the type 

A jump originating on a horizontal apron or which could be considered as such because 

of its low bed slope (Bretz, 1988). The tangential component of the proper weight of the 

liquid mass constituting the hydraulic jump, which is difficult to evaluate from a 

theoretical point of view in the general case, no longer needs to be taken into 

consideration. Moreover, the effect of friction is neglected compared to the head loss 

caused by the hydraulic jump. With all these simplifications, the application of the 

momentum equation generally causes no major problems. 

The considerations set out above led to the establishment of the universally known 

Belanger’s relationship (1828), allowing the explicit calculation of the sequent depth ratio 

Y as a function of the incident Froude number F1 for the case of the classical hydraulic 

jump.  

Regarding the hydraulic jump controlled by a broad-crested sill in a rectangular channel, 

Forster and Skrinde (1950) were the first to propose a purely theoretical approach. To 

date, no study has brought new arguments to corroborate or invalidate this approach. As 

stated by Forster and Skrinde (1950), the hydraulic jump controlled by a broad-crested 

sill is no exception since it is also governed by the momentum equation applied between 

the final section of the jump and a selected section of the flow above the sill where the 

depth is minimal. However, two simplifying assumptions were the basis of the theoretical 

development. The first admits that the effect of the approach flow velocity is negligible, 

while the second imposes a restriction on the minimum depth of the flow above the sill. 

Since then, there have been no other studies, either from theoretical or experimental points 

of view, which could have corroborated or possibly corrected the theoretical relationships 

proposed by these authors by observing the side effect of the abovementioned hypotheses 

on the momentum equation. 

Our in-depth research in the specialist literature clearly confirms that the work of Forster 

and Skrinde (1950) is the only means used today for the design of stilling basins working 

with hydraulic jumps controlled by a sill, both broad and thin-crested. Applying the 

momentum equation to the case of a broad-crested sill controlling the hydraulic jump in 

a rectangular channel, which is of interest to the present study, Forster and Skrinde (1950) 

derived the implicit theoretical relationship between the relative sill height S and the 

incident Froude number F1 based on the simplifying assumptions previously pointed out. 

Thus far, design engineers have used this relationship to derive the required value of the 

sill height s provided that the incident Froude number F1 is given.   

The current research will reveal, from the theoretical and experimental points of view, 

that the Forster and Skrinde development is not rigorous or even not advisable. Thus, a 

much more convincing surrogate relationship derived from rigorous theoretical 

development devoid of any simplifying assumptions is proposed, highlighting the 

harmful influence of the simplifying assumptions of the Forster and Skrinde approach 

and the shortcomings of the resulting equation. 
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AVAILABLE RELATIONSHIPS 

The sill is considered “broad” when the liquid profile flowing through is almost parallel 

to the crest of the sill, provided that the length L is sufficient (Fig. 1). 

 

Figure 1: Crossing flow with a continuous broad-crested sill of height s and length L. The 

hatched surfaces correspond to the assumed hydrostatic distribution of 

pressures 

The concept of the broad-crested sill is also related to the characteristics of the flow, and 

according to the classification of Rao and Muralidhar (1963), the sill is considered to be 

broad if the following condition is satisfied: 

2
0.10 0.35

h s

L

−
             (1) 

In section 2 of Fig. 1, the flow is in the subcritical regime of depth ℎ2. The depth ℎ2could 

be the final depth of a classical hydraulic jump with initial depth ℎ1 in section 1 (Fig. 1), 

generated by a sluice gate, for instance, or by any other incident flow generating device. 

The sill is then crossed by a flow in the critical regime of depth ℎ𝑐, followed by a slice of 

flow in the supercritical regime whose final depth ℎ𝑚  is the smallest possible in section 

m, i.e., minimum. The external forces that act on the chosen sections 2 and m are the 

following: the hydrostatic force 𝐹2 applied to section 2 upstream of the sill; the reaction 

force 𝐹𝑠 applied on the upstream face of the sill, and the hydrostatic force 𝐹𝑚 applied to 

section m. Per unit channel width, these forces are expressed, respectively, as: 
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where  is the density of the flowing liquid (kg.m-3) and g is the acceleration due to gravity 

(m.s-2). 

If one considers that all the friction forces are negligible, that the depth ℎ𝑚is the minimum 

depth on the threshold and that the pressure distribution is hydrostatic, then the 

application of the momentum equation allows writing the following: 

( )2 2
2 22

2 2 2 2

m

m

s h h sh hq q q

g h h

 + −   
− = − − 

 
 

           (5) 

where q is the discharge per unit width (m2.s-1), that is, the discharge Q (m3.s-1) divided 

by the width b of the channel (m).  

On the other hand, tests performed by Doeringsfeld and Barker (1941) showed the 

following: 

(ℎ2 − 𝑠) ≅ 2ℎ𝑚            (6) 

Under this condition, the momentum equation expressed by (5) reduces to: 

2 3/2

2

0.433 2
h

q g H
h s

=
+

          (7) 

where: 

𝐻 = ℎ2 − 𝑠            (8) 

As shown in Fig. 1 as well as Eq. (8), H represents the vertical distance counted above 

the sill without taking into account the velocity head 
𝑉2

2

2𝑔
, which amounts to saying that the 

approach flow velocity has been neglected. 

The classical hydraulic jump is governed by the well-known Belanger equation (1828), 

which expresses the sequent depth ratio Y in terms of the incident Froude number F1 as 

follows: 

( )2
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1
1 8 1

2
Y F= + −           (9) 

Combining Eqs. (7), (8), and (9), and knowing that 𝐹1
2 =

𝑞2

𝑔ℎ1
3 results in: 
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Thus, Eq. (10) attributed to Forster and Skrinde (1950) shows that the relative sill height 

S is an implicit function of the incident Froude number F1. Using an iterative process 
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applied to Eq. (10), Table 1 has been drawn up which allowed plotting Fig. 2 representing 

the variation in S as a function of F1.  

Table 1: Values of the relative sill height S as a function of F1 according to Forster 

and Skrinde implicit Eq. (10) 

𝐹1 𝑆 =
𝑠

ℎ1
 

3 0.715 

4 1.395 

5 2.136 

6 2.921 

7 3.739 

8 4.585 

9 5.454 

10 6.342 

11 7.246 

 

Figure 2: Variation in the relative sill height S as a function of 𝑭𝟏 according to 

Table.1 

As shown in both Table 1 and Fig. 2, the relative sill height S increases with the increase 

in the incident Froude number 𝑭𝟏. When the Froude number 𝑭𝟏 increases, the hydraulic 

jump moves downstream and then disappears, giving way to a supercritical flow over the 

stilling basin. To make the hydraulic jump reappear, it is necessary to increase the height 

s of the sill.  

The curve of Fig. 2 can be used provided that the depth h3 downstream of the sill, in 

section 3, satisfies the following inequality: 

0

1

2

3

4

5

6

7

8

3 4 5 6 7 8 9 10 11

1/ hsS =

1F



Achour B. & Amara L. / Larhyss Journal, 54 (2023), 145-174 

152 

( )3 2

1
2

3
h h s +           (11) 

Forster and Skrinde (1950) also note that the curve in Fig. 2 coincides with that obtained 

for the case of the hydraulic jump controlled by a positive step crossed by a critical flow 

of depth ℎ𝑐 and such that the length of the stilling basin is as follows: 

( )5 cX s h= +          (12) 

NEW THEORETICAL APPROACH 

Let us assume that Fig. 1 represents a classical hydraulic jump generated by a sluice gate 

and controlled by a broad-crested sill crossed in a critical regime. The indicated sections 

1 and 2 are the initial and final sections of the hydraulic jump, respectively. Taking the 

horizontal bottom of the channel as the reference plane and considering the kinetic energy 

correction coefficient equal to unity, the total heads 𝐻1 and 𝐻2 in sections 1 and 2 are 

written, respectively, as: 

2
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From the geometric point of view, Fig. 1 shows the following: 

2 1.5c cH s H s h= + = +           (15) 

The head loss 𝛥𝐻 due to the hydraulic jump is given by the difference between the heads 

𝐻1and 𝐻2 such that: 

1 2
H H H = −                                       (16) 

Combining Eqs. (15) and (16) yields what follows: 

( )1 1.5 cH H s h = − +           (17) 

Let us consider the following dimensionless parameters: 
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Thus, Eq. (17) reduces to: 

* *

1

*

1 1

3 / 2H Hs

h h

−  −
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However, the Froude number 𝐹1of the incident flow can be written as follows: 

1 * 3/2

1

1
F

h
=         (23) 

In the same way, considering Eq. (13), one may derive the following: 

1* *

1 1 * 2

1

1
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H h

h h
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Belanger's equation (9) can be transformed into the following form: 

2//24/
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1

*
1
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1

*
2 hhhh −+=          (25) 

It is well known that the head loss 𝛥𝐻 due to the classical hydraulic jump is expressed as 

(Bretz, 1988): 

( )
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Eq. (26) can be rewritten as follows: 

( )
3
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2 14

h h
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h h

−
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Considering Eqs. (23), (24), (15), and (27), Eq. (22) then clearly shows that the relative 

sill height S only depends on the incident Froude number F1. 

Identically to Eq. (24), one may write that: 
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2* *

2 2 * 2
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Eq. (28) can be rewritten as follows: 

* *

2 1 2 * 2

1

1

2
H Y h

Y h
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Eq. (18) can be easily written as follows: 

* * *

1 2H H H = −           (30) 

Thus, Eq. (22) becomes: 

*
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Combining Eqs. (23), (29), and (31) results in: 
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After simplifications, Eq. (32) reduces to: 

2

1 2/3

1
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1 3

2 2

Fs
Y F

h Y

 
= + − 
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          (33) 

What is known in practice is the incident Froude number F1, and the relationship (33) 

allows the direct calculation of the height s of the sill required for the complete formation 

of the hydraulic jump on the stilling basin. 

In a previous study performed on the control of hydraulic jumps in a U-shaped channel 

(Achour and debabèche, 2003b), the rectangular channel was considered a special case, 

and the relationship (33) was deduced. 

Let us remember that the sequent depth ratio Y is related to the incident Froude number 

F1 by Belanger’s Eq. (9).  

For the value F1=1, corresponding to the critical flow condition, Belanger's Eq. (9) gives 

Y = 1. Consequently, Eq. (33) allows us to write that S = 0. It is not possible to satisfy 

these conditions from Forster and Skrinde's Eq. (10) because this is an incomplete 

approximate relationship.  

Eq. (33) confirms what was stated earlier, namely, the relative sill height S depends solely 

on the Froude number F1. This is the same conclusion reached by Forster and Skrinde 

through their relationship (10); however, Eqs. (10) and (33) are fundamentally different. 
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The first equation is based on two simplifying assumptions, namely, the approach flow 

velocity is neglected, and the minimum height hm is approximately given by Eq. (6). 

These simplifying assumptions could significantly reduce the reliability of Eq. (10). 

Contrariwise, Eq. (33) is not based on any simplifying assumption; in particular, it takes 

into account the approach flow velocity. On the other hand, Eq. (10) is implicit in S, which 

further complicates the calculation of this parameter. For the computation of S, it is 

necessary to use a calculation program based on iterative procedures. Thus, the other 

significant advantage of Eq. (33) is that it is explicit, allowing the direct computation of 

S for a given value of the incident Froude number F1.  

The values of the relative sill height S, computed according to Eqs. (10) and (33), are 

grouped together in comparative Table 2 for the wide range of incident Froude numbers, 

such as 3  F1  11. The deviations caused by these two relationships are also reported.  

 

Table 2: Values of the relative sill height S according to Forster and Skrinde’s Eq. 

(10) and the author’s Eq. (33) 

𝐹1 
𝑆 =

𝑠

ℎ1

 

Eq. (10) 

𝑆 =
𝑠

ℎ1

 

Eq. (33) 
Deviation (%) 

3 0.715 0.968 26.15 

4 1.395 1.697 17.81 

5 2.136 2.490 14.24 

6 2.921 3.328 12.24 

7 3.739 4.200 10.97 

8 4.585 5.098 10.06 

9 5.454 6.018 9.37 

10 6.342 6.957 8.84 

11 7.246 7.912 8.41 

 

Table 2 shows that Eq. (33) derived from the theoretical authors’ approach gives relative 

sill height values greater than those resulting from Forster and Skrinde's approximate Eq. 

(10). However, the observed deviation decreases as the incident Froude number F1 

increases. These deviations could be partly explained by the fact that the approach flow 

velocity was neglected in the theoretical development carried out by Forster and Skrinde. 

It is useful to note indeed that the following quantity that appears in Eq. (33):   

2

11

2

F

Y


 
=  

 

        (34) 

is closely related to the kinetic energy downstream of the hydraulic jump since one may 

write that: 
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2
2

1 2

1

1

2 2

F V

Y g h


 
= = 

 
        (35) 

where 𝑉2is the mean flow velocity in section 2 shown in Fig. 1.  

Table 3 groups the values of the kinetic factor  calculated according to Eq. (35) for the 

wide range 3  F1  11. 

Table 3: Values of the kinetic factor  as a function of the incident Froude number 

according to Eq. (35) 

𝐹1 
  

Eq. (35) 

3 0.3163 

4 0.2983 

5 0.2880 

6 0.2812 

7 0.2765 

8 0.2731 

9 0.2704 

10 0.2683 

11 0.2666 

As shown in Table 3, the kinetic factor  decreases as the incident Froude number F1 

increases while varying in the range 0.267    0.316. The values of  indicated in this 

range are not insignificant, which allows us to conclude that the approach flow velocity 

cannot be neglected. If  were deliberately neglected, i.e.,  = 0, Eq. (33) would be 

reduced to: 

2/3

1

1

3

2

s
Y F

h
= −         (36) 

This would lead to a maximum deviation of approximately 5% in comparison to the 

values of the relative sill height S computed using Forster and Skrinde's Eq. (10) and 

reported in Table 2. 

Fig. 3 shows both the variation curves of the relative height S of the broad-crested sill as 

a function of the incident Froude number F1, according to Forster and Skrinde Eq. (10) 

and the authors’ Eq. (33) for  = 0 and   0. 
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Figure 3 : Variation 𝑺(𝑭𝟏). (−) Author’s Eq. (33) for    0; (- - o - -) Author’s Eq.(33) 

for  =  0 ; (−•−) Forster and Skrinde’s approximate Eq.(10)  

Let us assume that S represents the deviation between the value of the relative sill height 

S corresponding to   0 and  = 0, i.e., 

00 = −=  SSS          (37) 

Taking into account Eq. (33), Eq. (37) becomes: 
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        (38) 

After simplifications, Eq. (38) reduces to: 

=












=

2
1

2

1

Y

F
S           (39) 

Eq. (39) indicates that S corresponds to the kinetic factor. Inserting Eq. (9) into Eq. 

(39) results in: 

2

1

2
2

1

2

1 8 1

F
S

F

 = =
 + −
 

          (40) 

Eq. (40) clearly shows that S depends solely on the incident Froude number F1. The 

variation of S =  as a function of F1 is shown graphically in Fig. 4 in accordance with 

Eq. (40). This shows that S undergoes a rapid decrease in the range 1 < F1  5 and then 

a slow decrease beyond F1 = 5.  

The relative deviation on the relative sill height S is written as: 
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Eq. (41) is also represented in Fig. 4, showing that
𝛥𝑆

𝑆𝜎=0
 decreases as F1 increases and takes 

the value of 4.7% (0.047) for F1 = 9.  

The point of intersection of the two curves in Fig. 4 translates the following equality: 

0

S
S

S =


=            (42) 

This amounts to writing that: 

0 1S = =                    (43) 

Inserting the previous condition into Eq. (33) yields: 

2/3

1

3
1 0

2
Y F− − =           (44) 

Taking into account Eq. (9) expressing𝑌(𝐹1), the calculation shows that the root of Eq. 

(44) is: 

1 3.4771F =           (45) 

 

 

Figure 4: Variation in S =  and S/S ( = 0) as a function of the incident Froude number 

F1. 

1 2 3 4 5 6 7 8 9 10 11

0

10.0

20.0

30.0

40.0

50.0

1F

Eq.(41));1(0/ FfSS == 

( ) )40.(Eq1FS



Control of the hydraulic jump by a broad-crested sill in a rectangular channel new 

theory and experiment  

159 

It is worth noting that although Eq. (10) is not recommended for the objective reasons 

previously pointed out; however, its implicit character can be lifted by replacing it with 

the implicit modified model of Hoerl (Kolb, 1983) such that: 

11/ 1.1433

10.5861 0.1384 0.3494
F

S F=  −         (46) 

The calculation showed that in the wide range 3  F1  11, the maximum deviation caused 

by the use of the explicit Eq. (46) is less than 0.038% when compared to the implicit Eq. 

(10). 

EXPERIMENTAL VALIDATION 

Description of the flow and problem statement 

The objective of this part of the study consists of the experimental investigation of the 

hydraulic jump controlled by the setup of a continuous broad-crested sill. The theoretical 

relationships derived previously will be subjected to an experimental program as 

intensely as it is rigorous to corroborate them or correct them if deviations are observed 

between the theoretical and experimental results. Instead of generating an incident flow 

through a sluice gate, as in most previous studies, a specially designed device consisting 

of a box-convergent assembly working under a pressurized state was used (Figs. 5, and 

6). The box as well as the convergent are equipped with steering guides that properly 

direct the flow toward the entrance of the channel. The box is fed directly by the pump 

using piping. The entire device is constructed by welding metal plates of sufficient 

thickness to ensure the nondeformability of the system. Such a device has many 

advantages; in particular, it generates a high-velocity incident flow, and the initial flow 

outlet height h1, i.e., the initial depth of the hydraulic jump, is controlled by the exit 

opening 𝑎𝑜of the convergent element (Fig. 5)  

 

 

Figure 5: Hydraulic jump controlled by a broad-crested sill; incident flow generated 

by a box-convergent set 
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Figure 6: Photograph illustrating an experimental configuration of a controlled 

hydraulic jump by a broad-crested sill 

The implementation of a broad-crested sill of height s and length L in a rectangular 

channel of width b, placed at a distance X from the initial section of the hydraulic jump, 

makes this one appear on the horizontal apron of the channel.  

For a given value of the incident Froude number F1 and for a chosen sill height s, the 

hydraulic jump starts at the origin 0 and extends over the length Lj less than the horizontal 

distance X (Fig. 1). The increase in the Froude number F1, due to the increase in the flow 

rate Q, causes both the displacement of the jump downstream as well as the increase in 

its length Lj. If the length X is short enough, the initial depth h1 of the hydraulic jump 

can be assimilated to the outlet opening ao of the convergent. Incident flow can also be 

generated by a sluice gate, and the initial depth of the jump is such that h1 = 𝐶𝑐𝑎𝑜, where 

𝐶𝑐denotes the coefficient of contraction of the sluice gate and ao the opening thereof. On 

the other hand, if the length X is large, the initial depth h1 must be measured at origin 0. 

The flow slice spanning the distance X is both supercritical and gradually varies. It is in 

fact an H3-type backwater curve because the channel apron is horizontal.  

Despite the increase in the incident Froude number, the flow slice of length X can be 

reduced by raising the sill, i.e., by increasing the sill height s. The increase in both the 

incident Froude number F1 and the sill height s implies an increasingly large relative 

length   Lj /X which would be equal to unity as a limit value. The greater the length X is, 

the higher the values of the incident Froude number F1 and of the sill height s must be to 

obtain a relative length Lj /X equal to unity. 

To reach the state of the flow described in Fig. 1, it is necessary to go through a number 

of experimental manipulations. 

The test channel is fed at an increasing flow rate Q. The horizontal apron is first flooded 

as shown in Fig. 7. 
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Figure 7: Mechanism of formation and appearance of the hydraulic jump in a 

flooded basin with increasing flow rate Q. P: Piping; B: pressurized box; 

C: pressurized convergent. 

The flow is in a subcritical regime on the horizontal apron, critical above the sill, and 

supercritical downstream thereof. The mean velocity V1 of the flow exiting convergent C 

is lower than the critical velocity Vc, i.e., 

𝑉1 < 𝑉𝑐        (47) 

The velocities 𝑉1and 𝑉𝑐are written as follows: 

1

1

Q
V

b h
=          (48) 

c
c

hb

Q
V =         (49) 

where h1 denotes the thickness of the water vein coming out of convergent C, which also 

corresponds to the initial depth of the hydraulic jump as defined previously, and hc is the 

critical depth. Thus, inequality (47) allows us to write the following: 

1ch h          (50) 

This reflects the subcritical nature of the flow in section 1 (Fig. 7). In this section, the 

incident Froude number F1 is less than unity, i.e., 
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The total head of the liquid stream in the subcritical regime between convergent C and 

the sill of height s is written as: 

Sub cH s H= +         (53) 

where the subscript “Sub” denotes “Subcritical”, and 𝐻𝑐is the critical total head above the 

sill. On the other hand, neglecting all head losses that might occur both inside convergent 

C and in the abrupt vertical enlargement at the exit of the convergent, the total head 

upstream of convergent C is approximately such that: 

2

1

2
Up Sub

V
H H

g
= +                       (54) 

where the subscript “Up” denotes “Upstream”. 

Eq. (54) can be rewritten as: 

2

2 2

12
Up Sub

Q
H H

g b h
= +         (55) 

The critical depth ℎ𝑐in a rectangular channel is written as: 

1/3
2

2c

Q
h

g b

 
=  
 

        (56) 

Consequently, Eq. (55) becomes: 

3

2

12

c

Up Sub

h
H H

h
= +           (57) 

Combining Eqs. (50) and (57) results in: 

3

2

c

Up Sub

h
H H +         (58) 

Inserting Eq. (53) into Eq. (58) yields: 

3

2

c

Up c

h
H s H + +         (59) 

By increasing the flow rate Q, the flow velocity in section 1 at the exit of convergent C 

increases. When the flow velocity V1 in this section exceeds the critical velocity Vc, i.e., 

when 𝑉1>𝑉𝑐 andℎ𝑐 > ℎ1, the flow regime of the liquid vein leaving convergent C becomes 

supercritical to transform into a subcritical flow between sections 1 and 2. This implies 

the existence of a localized hydraulic jump between these sections, but it will remain 
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submerged as long as the depth ℎ2of the roller is below the water level imposed by the 

total head𝐻2 = 𝑠 + 𝐻𝑐 , or as long as: 

2 2;Subh h         (60) 

One may also state that the water whirlpool, like a premature hydraulic jump, occurring 

at the exit of convergent C will remain submerged as long as the water head plane 

downstream of the hydraulic jump, defined by (𝐻1 − 𝛥𝐻) remains below the water head 

plane defined by relationship (53); H denotes the head loss due to the water whirlpool, 

and 𝐻1is the total initial load in section 1. In other words, one may write: 

1 cH H s H−  +         (61) 

The head loss due to the water whirlpool occurring at the outlet of the convergent 

decreases as the flow rate increases. For a certain flow rate Q, this head loss disappears, 

and when the liquid stream exits the convergence, it becomes completely free in section 

1, i.e., unsubmerged; then, one may write what follows: 

0Up SubH H− =         (62) 

On the other hand, one can also notice that the liquid vein becomes completely free when 

inequalities (60) and (61) are transformed into equalities. Under this condition, one may 

write the following: 

1 cH H s H− = +           (63) 

Dividing both sides of Eq. (63) by the critical depth hc, Eq. (17) reduces to: 

* *

1

*

1

/c cH H H h
S

h

− −
=         (64) 

Eq. (22) is then reproduced since Eq. (22) and Eq. (64) are the same. However, the latter 

was derived using a different method based on flow behavior equations. 

It is useful to note that for the case of the rectangular channel, the ratio of the total critical 

head 𝐻𝑐to the critical depth ℎ𝑐 is equal to 3/2, i.e.,  

3

2

c

c

H

h
=          (65) 

Eq. (64) along with Eq. (65) corresponds to the appearance of the hydraulic jump on the 

horizontal apron of the channel test; it is satisfied for a flow rate Qo, and the hydraulic 

jump originates immediately downstream of the outlet section of the convergent, as 

depicted in Figs. (5) and (6). Qo corresponds to the maximum allowable flow rate 

compatible with the presence of the hydraulic jump. From the moment the flow rate Q is 

increased to become greater than Qo, the hydraulic jump moves downstream, and the 
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distance X increases. The initial depth h1 of the hydraulic jump then corresponds to the 

final depth of the flow of length X. By again increasing the flow rate Q, the hydraulic 

jump moves even more downstream. To bring it back to its original position, the sill of 

height s must be raised. This experimental manipulation aims, in particular, to reduce the 

length X of the supercritical flow preceding the hydraulic jump as much as possible, 

whose initial depth h1 can then be assimilated, with an excellent approximation, to the 

exit opening ao. This approach avoids measuring the depth h1 required for calculating the 

incident Froude number F1. The experimental measurement of the initial depth h1 using a 

point gauge is very delicate due to the supercritical flow regime. 

For a chosen value of the opening ao and for different sill heights s, the position of the 

hydraulic jump can also be obtained by a very fine adjustment of the flow rate Q. 

Laboratory experimentation has shown that this approach is restrictive because a slight 

increase in the flow rate Q can cause the rapid displacement of the hydraulic jump 

downstream. For each pair of values (ao; Q), the incident Froude number F1 is calculated 

according to the following relationship: 

32

2
2

1
oabg

Q
F =         (66) 

In fact, each series of tests was carried out for a given opening of the convergent and for 

different flow rates while maintaining the distance X approximately equal to 5 cm. The 

length X could not be reduced further due to the horizontal instability of the hydraulic 

jump. Thus, for fixed ao and X, different profiles of the hydraulic jump were obtained at 

increasing flow rates, each corresponding to a given value of the height s of the sill, as 

shown in Fig. 8. 
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Figure 8: Profiles of the hydraulic jump controlled by a broad-crested sill, obtained 

at an increasing flow rate Q, while𝑎𝑜and X are fixed 

Description of the test bench and the measurement apparatus 

The experiment was carried out in a rectangular channel 40 centimeters wide, 6 meters 

long and 45 cm deep (Fig. 9) fed in a closed circuit by a 35 l/s flow pump. The walls of 

the channel are made of transparent glass to visualize the flow, while its bottom is 

metallic. The double-precision Vernier point gauges intended for the measurement of 

depths, particularly the final depth h2, were arranged along the channel by means of metal 

brackets supported by the walls of the channel (Fig. 11). The double-precision Vernier 

point gauge used was graduated to 1/10th to minimize reading errors on the depth causing 

an absolute error of only 0.02 mm. The incident flow is generated by a pressurized 

convergent 1 m long and of the same width as the test channel. Its initial and final 

openings are 15 cm and 0.45 cm, respectively, and it is connected to a pressurized box of 

the same width. The box-converging set, made of sheet metal, is directly supplied by the 

pump through a flexible pipe. The box and the convergent are fitted inside with carefully 

arranged guides to best ensure the stability, uniformity, and correct orientation of the 

incident flow. A waterproof vertical plate is placed above the box and over its entire width 

to avoid any water overflow when the hydraulic jump is submerged and the measurement 

channel is flooded (Fig. 9). The flow of water exiting downstream of the test channel was 

collected in a recovery water basin equipped with a tranquillizer. The basin was connected 

to the test channel by means of a metal pipe in which the pump is inserted and which ends 

in a flexible pipe. The diaphragm flow meter is inserted into the steel piping, and its two 
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pressure taps are connected to a piezometric panel by transparent hoses that allow easy 

reading of the pressure head. The box-convergent set can move horizontally, which makes 

it possible to adjust the position X of the sill to the needed value. This operation can also 

be carried out by moving the sill horizontally, but it is much more restrictive than the first 

because the sill is carefully fixed and its sealing ensured. The exit opening ao of the 

convergent, which has been varied in the range 0.45 cm  ao  2.1 cm, was adjusted at 

will as well as the height s of the sill, which made it possible to obtain a very wide range 

of values of the relative sill height S such that 1  S  6.15. The height s of the sill was 

chosen so that the hydraulic jump forms at a distance X = 5 cm from the convergent 

generating the incident flow. Sills of different heights, varying between 2.1 cm and 13 

cm, were tested associated with previously indicated initial depths h1 = ao of the hydraulic 

jump; these were obtained by operating a simple transverse cut of the convergent at the 

desired opening ao by the use of an appropriate metal plate cutting machine. 

The adopted openings of the convergent have generated incident Froude numbers varying 

in the wide range 3.082  F1  9.20. 

The flow crossing the sill was free, and the downstream depth h3 had no influence on the 

flow rate. The different experimental flow rates were measured by a diaphragm flow 

meter with a relative error of  0.25 l/s. The diaphragm flowmeter has been previously 

calibrated in the wide range of flow rates Q such that 1.18 l/s  Q  35 l/s measured using 

a 90° V-notched weir.  

Flow rates Q and depths h2 were the only parameters requiring specific equipment. The 

positions X of the sill as well as its height s were simply measured using a graduated tape. 

As already indicated, the initial depth h1 of the hydraulic jump was assimilated to the 

outlet opening 𝑎𝑜of the convergent generating the incident supercritical flow after having 

positioned the hydraulic jump at approximately X = 5 cm.  
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Figure 9: Overview of the rectangular test channel 

 

Figure 10: Upstream view of the hydraulic jump 

box-converging set

Waterproof vertical plate 

Flexible pipe

Recovery water basin 

Glazed channel wall

Graduated tape



Achour B. & Amara L. / Larhyss Journal, 54 (2023), 145-174 

168 

 

Figure 11: View of the double-precision Vernier point-gauge used for the depth 

measurement 

RESULTS 

The experiment was first interested in Eq. (9) of Belanger governing the sequent depth 

ratio Y of the hydraulic jump as a function of the incident Froude number F1. The latter 

was computed using Eq. (66) for each tested opening ao and flow rate Q. The collected 

experimental results of Y and F1 are reported in Table 4, which allows us to plot Fig. 12. 

 

Table 4: Experimental values of Y and F1 for a hydraulic jump controlled by a 

broad-crested sill in a rectangular channel 

𝐹1 3.082 3.460 3.950 4.273 4.660 5.423 6.380 6.782 7.322 

Y 3.870 4.421 5.120 5.560 6.110 7.150 8.500 9.080 9.800 

𝐹1 7.620 8.240 8.635 9.200      

Y 10.150 11.000 11.650 12.450      
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Figure 12: Variation Y(F1) showing both experimental data (open signs) and 

theoretical predictions (dashed line) according to Eq. (9). 

 

Fig. 12 clearly shows that the setup of the broad-crested sill on the horizontal apron has 

practically no reducing effect on the sequent depth ratio Y of the controlled hydraulic 

jump. Indeed, the experimental points are practically aligned on the Belanger straight 

dashed line valid for the classical hydraulic jump. For high values of the incident Froude 

number F1, it seems that the experimental points tend to lie below the Belanger straight 

dashed line, meaning that the Y ratio of the controlled jump is lower than the Y ratio of 

the classical jump. This is probably due to friction effects, but the resulting deviation is 

not perceptible to the naked eye in Fig. 12. The calculation shows that the maximum 

deviation between the experimental and theoretical results is less than 1.47% obtained for 

F1= 8.24, which allows us to conclude that the theoretical Eq. (9) is generally satisfied in 

the wide range 3  F1  10. Let us recall that Hager and Bremen (1989) experimentally 

observed a certain friction effect on the ratio Y for the classic hydraulic jump, which does 

not appear clearly during our tests.  

The variation in the parameters governing the control of the hydraulic jump, such as the 

relative sill height S and the incident Froude number F1, was also experimentally 

examined during our tests. To this must be added the effect of the kinetic factor  

computed according to Eq. (35) for the known experimental values of Y and F1. Table 5 

groups together the collected experimental values of the involved parameters, particularly 

showing the theoretical and experimental variation in the kinetic factor  as a function of 

the incident Froude number F1. The variation in  is clearly observed in Fig. 13. 
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Table 5: Experimental values of the parameters governing the control of the 

hydraulic jump by a broad-crested sill in a rectangular channel 

𝐹1 3.082 3.460 3.950 4.273 4.660 5.423 6.380 6.782 7.322 

Y 3.870 4.421 5.120 5.560 6.110 7.150 8.500 9.080 9.800 

 0.317 0.306 0.297 0.295 0.291 0.287 0.281 0.279 0.279 

S 1,000 1.290 1.670 1.885 2.200 2.785 3.600 3.950 4.400 

𝐹1 7.620 7.860 7.992 8.170 8.362 8.694 8.841 9.002 9.200 

Y 10.150 10.510 10.782 11.000 11.300 11.770 12.000 12.190 12.45 

 0.282 0.279 0.275 0.276 0.274 0.273 0.271 0.272 0.273 

S 4.600 4.850 5.000 5.200 5.400 5.700 5.800 5.950 6.150 

 

 

Figure 13: Theoretical and experimental variation in the kinetic factor  as a 

function of incident Froude number F1. (− −) Theoretical Eq. (35); (o) 

Experimental data 

It thus appears that the kinetic factor  decreases as the incident Froude number increases. 

For high values of the Froude number F1, such as F1  6, the experimental values of  are 

slightly higher than the theoretical values and undergo a relatively slow variation around 

the  value approximately equal to 0.275. However, it is justified to state that the 

theoretical relationship (35) that governs the kinetic factor  is globally satisfied and that 

the few experimental values that deviate from the theoretical curve were probably 

affected by some handling errors during the tests. What is interesting to highlight is that 

the experimental tests confirm that the values of  are relatively significant so that the 

kinetic factor cannot be neglected in the theoretical development, as was the case in 

Forster and Skrinde’s study (1950). 

On the other hand, Fig. 14 shows both theoretical and experimental variations in the 

relative sill height S as a function of the incident Froude number F1. 
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Figure 14: Theoretical and experimental variation in the relative sill height S as a 

function of incident Froude number F1 during the control of a hydraulic 

jump by a broad-crested sill in a rectangular channel. (o) Experimental 

data; (- - -) Authors’ theoretical Eq. (33) for   0;  

      (−−) Authors’ theoretical Eq. (33) for  = 0; (− red curve) Forster and 

Skrinde’s theoretical Eq. (10) neglecting the approach flow velocity 

(1950). 

Fig. 14 shows that the experimental data tend toward the theoretical curve drawn 

according to the authors’ theoretical Eq. (33). One may also observe that the kinetic factor 

 is not negligible, especially for low values of the incident Froude number F1, while its 

effect is only relative when the values of F1 are high. Indeed, for high values of F1, the 

experimental data come close to the authors' theoretical curve when  = 0. However, what 

it is necessary to point out with regard to Fig. 14 is that the theoretical Forster and 

Skrinde’s Eq. (10) is unreliable, largely because the effect of the approach flow velocity 

has been wrongly neglected. The second reason is due to the approximation of Eq. (6) on 

which the theoretical Forster and Skrinde’s Eq. (10) is partly based.  

As revealed in Fig. 14, Forster and Skrinde's relationship gives values of the relative sill 

height S lower than what they should be. This means that the values of S given by Forster 

and Skrinde's equation will result in releasing the hydraulic jump from the stilling basin 

to disappear entirely after a moment. Thus, energy dissipation will not occur, and the 

stilling basin may be damaged due to the erosive effect of the involved forces. 

Finally, it is quite justified to conclude that the theoretical relationship (33) derived by 

the authors can be applied with good accuracy to predict the appropriate relative sill 

height S in the wide range 3  F1  9 and even beyond 9. 
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CONCLUSION 

The study first reviewed the important work of Forster and Skrinde published in 1950 

relating to the control of hydraulic jumps by a broad-crested sill in a rectangular channel. 

Under free-flow conditions, the sill acts as a weir, and the relative sill height S is only a 

function of the incident Froude number F1. The dependence between these two variables 

was translated by an implicit relationship in S whose calculation requires an iterative 

process [Eq. (10)]. To achieve this relationship, Forster and Skrinde used the momentum 

equation applied between the final section of the hydraulic jump and the minimum depth 

section on the sill. However, the theoretical development relies on two simplifying 

assumptions that have significantly and seriously altered the reliability of the advocated 

relationship. It is for this reason that the present research has looked at the possibility of 

finding a more convincing surrogate relationship. Based on the energy equation and on 

no simplifying assumptions, the authors successfully established the relationship S(F1) 

applicable in a wide range of incident Froude numbers such that 3  F1  11 [Eq. (33)]. 

The double advantage of this relationship lies in the fact that it takes into account the 

effect of the approach flow velocity and that it is explicit as well, unlike Forster and 

Skrinde's relationship. This effect is represented by the dimensionless parameter  

defined as a kinetic factor. The calculation showed that for a wide range of incident 

Froude numbers, the kinetic factor cannot be neglected. A rigorous comparison between 

the values of the relative sill height S calculated according to Forster and Skrinde and the 

current approach shows that the maximum deviation observed for   0 is significant, 

reaching 26.15% for F1 = 3 and 8.41% for F1= 11. The deviation is 5% when the effect 

of the approach flow velocity is neglected corresponding to  = 0. 

This experimental study constituted the second part of the investigations undertaken on 

the hydraulic jump controlled by a broad-crested sill in a horizontal rectangular channel. 

The main objective is to corroborate the theoretical relationships or correct them if 

necessary based on the experimental results. To achieve this objective, broad-crested sills 

of different heights were tested. After describing the flow and posing the problem, the 

test bench and measuring equipment were described. This was simple since the 

experiment only required a diaphragm flowmeter to measure the flow rates and a double-

precision Vernier gauge for measuring flow depths, primarily the final depth h2 of the 

hydraulic jump. The measurement of the initial depth h1 of the hydraulic jump was not 

carried out by a Vernier gauge as it is customary to do. Due to the strongly supercritical 

nature of the incident flow, the measurement of the depth of this flow by this means is 

not at all easy and even imprecise. As soon as the tip of the gauge touches the surface of 

the water, a chaotic jet emerges distorting the reading. This difficulty was circumvented 

by setting up a pressurized box-convergent set intended to generate the incident flow. The 

box-convergent combination was directly supplied by a pump via a flexible pipe. The exit 

opening of the convergent element can be chosen at will according to the needs of the 

manipulation. The relative position of the sill was chosen so that the hydraulic jump 

formed immediately downstream of the convergent element, generating the undeveloped 

incident flow. The exit opening of the convergent was then assimilated, with an excellent 
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approximation, to the initial depth h1 of the hydraulic jump. The other advantage of the 

box-convergent assembly is that it can be moved horizontally on the channel bed, thus 

making it possible to adjust the position of the sill relative to the exit opening of the 

convergent according to the handling requirements.  

The analysis of the experimental measurements first showed that the sequent depth ratio 

Y of the hydraulic jump was faithfully defined by Belanger’s Eq. (9) even if the hydraulic 

jump was controlled by a sill. The setup of the broad-crested sill did not affect the ratio 

Y. Furthermore, experimental measurements have revealed that the relationship (33) is 

generally reliable over a wide range of incident Froude numbers such that 3  F1  9. A 

comparative study showed that the relationship (10) of Forster and Skrinde was not 

recommendable. It gives lower sill heights than they should be and thus will probably 

cause the disappearance of the hydraulic jump from the stilling basin, whose security 

would be seriously threatened by the erosive effects of the opposing forces. These same 

experimental measurements showed above all that the kinetic factor  could not be 

neglected, as it was unfairly considered in the previous works of Forster and Skrinde. It 

was observed that the kinetic factor  decreased as the incident Froude number F1 

increased. For high values of F1, such as F1  6, the experimental  was slightly higher 

than the theoretical  and underwent a slight variation around the mean value  = 0.275.  
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