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ABSTRACT 

Designing and maintaining open channels as well as studying nonuniform flow crucially 

depend on normal depth. In practical applications, the vaulted rectangular cross-section 

is widely applied. However, the form of the relationship determining the normal depth is 

implicit for this type of cross-section. Currently, trial and error procedures, the process of 

successively improving fitting, and regression-based fitting or the method of fitting 

curves are used to compute the normal depth for this type of channel. In this research, it 

is suggested to employ the rough model method (RMM) to estimate the normal depth in 

a vault-shaped rectangular cross-section. In this approach, knowing the Chezy or 

Manning coefficient will not be required in the process computation of normal depth in 

this conduit. However, it only needs measurable parameters, in particular, the impact of 

the absolute roughness. Based on well-known referential rough model properties, the 

RMM evaluates the normal depth using a dimensionless correction factor. The 

relationship that governs flow in the rough model allows for an explicit calculation of the 

normal depth in this kind of conduit. Calculation examples are given to illustrate how 

easy the calculation process is. 

Keywords: Vaulted rectangular cross-section, Discharge, Normal depth, Manning's 

roughness coefficient, Rough model method, Uniform flow. 
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INTRODUCTION 

The calculation of the normal depth is an essential task in the hydraulic design of open 

channels, and this parameter is important for the study and classification of nonuniform 

flow. (Swamee, 1994; Lakehal and Achour, 2017). The normal depth's governing 

equation is implicit for most of the channel sections; therefore, analytical solutions are 

not available (Vatankhah, 2012). In the past, due to the governing equation's implicit 

form, explicit computation approaches have been proposed in rectangular, trapezoidal, 

circular, egg-shaped, parabolic, and horseshoe channels (Swamee and Rathie, 2004; 

Vatankhah and Easa, 2011; Liu et al., 2010; Shang et al., 2020; Achour and Khattaoui, 

2008). 

The vault-shaped cross-section is used in irrigation and drainage systems in addition to 

being widely utilized as free surface water conveyance tunnels (Vatankhah, 2012; Liu 

and Wang, 2013). However, it is difficult to obtain an explicit solution for normal depth 

due to the complicated geometrical shape of the channel. In this respect, a few explicit 

equations with acceptable accuracy have been proposed for the computation of normal 

depth in this section. Recently, Vatankhah (2012) suggested an explicit equation for 

normal depth based on regression equations, with maximum relative errors of less than 

0.05%. Using the principle of gradual optimization fitting of the data points,  Liu and 

Wang (2013) proposed an explicit equation for the normal depth of the vault-shaped 

rectangular cross-section for different portions. The proposed equations have adequate 

accuracy with a maximum relative error of less than 1%. Shang et al., (2020) established 

an explicit formula for the normal depth for the vaulted rectangular cross-section using 

model parameters plus improved revised PSO algorithms in MATLAB, with maximum 

relative errors of less than 0.04%. Current methods to determine the normal depth used 

Manning’s or Chezy’s relations, with the Manning or Chezy coefficients considered to be 

a constant. Because these coefficients depend on geometric and hydraulic flow variables, 

including discharge, the longitudinal slope, kinematic viscosity, normal depth sought, 

and, more particularly, the absolute roughness that describes the state of the inner wall of 

the canal, this approach is not physically justified (Achour, 2015; Lakehal and Achour, 

2017). 

Therefore, this study aims to establish equations for determining normal depth in a 

vaulted rectangular cross-section based on practical data. The approach of computation is 

based on the rough model method (RMM), which has recently proven successful in the 

design of conduits and channels as well as in determining normal depth (Achour, 2014a; 

2014b;  2015; Achour and Bedjaoui, 2012; Achour and Sehtal, 2014; Lakehal and 

Achour, 2017; Riabi and Achour, 2019). The RMM only requires measurable parameters 

in practice to calculate the normal depth in the vaulted rectangular cross-section, namely, 

the discharge Q, the longitudinal slope i, the diameter D of the conduit, the absolute 

roughness , and the kinematic viscosity  of the flowing liquid. Moreover, unlike current 

methods of calculation, this one does not require the coefficients of Chezy and Manning. 

This approach is based on the geometric and hydraulic properties of a referential rough 
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model with well-defined parameters. These parameters are employed to derive those of 

the study channel, particularly normal depth, using a nondimensional correction factor of 

linear dimension (Achour, 2014b). The resulting equations from the RMM are valid in 

the entire domain of turbulent flow, which corresponds to Reynolds number R  2300 and 

relative roughness /Dh varying in the large range [0;0.05] (Achour, 2015). Examples are 

provided to help the reader comprehend the computation process and see how 

straightforward and effective it is. 

GEOMETRIC CHARACTERISTICS 

As shown in Fig. 1, the vaulted rectangular channel is composed of two different 

geometric parts. The water's surface is at the lower part, which is a rectangular section 

with a height of D/2 and a width when 0 / 2ny D   (Fig. 1a). When / 2 nD y D  , 

the water surface is situated at the upper part as a top arc section with a radius of D/2 (Fig. 

1b). This conduit is defined by the aspect ratio /ny D = , commonly referred to as the 

nondimensional normal depth, where ny  is the normal depth and D is is the diameter of 

a circular cross-section. The longitudinal slope is i, the absolute roughness is  , and the 

discharge is Q, with   as the fluid's kinematic viscosity. 

 

(a)                                                          (b) 

Figure 1: The vault-shaped rectangular cross-section at two flow depths 

a) 0 ≤ 𝑦𝑛 ≤
𝐷

2
;            b) 

𝐷

2
≤ 𝑦𝑛 ≤ 𝐷;

 

COMPUTATION OF NORMAL DEPTH BY MANNING'S EQUATION 

The normal depth for uniform flow in channels and conduits is calculated by Manning's 

equation (Chow, 1959): 

𝑄 =
1

𝑛
𝐴𝑅ℎ

2

3√𝑖  (1) 
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where Q is the discharge (m3/s), i is the longitudinal slope of the channel, n is the 

resistance coefficient of Manning, A is the water area (m2), and Rh is the hydraulic radius 

(m). 

According to the geometrical locus of the flow depth, the conduit’s geometrical and 

hydraulic characteristics are expressed as follows: 

1. For 0 / 2ny D  , i.e., 0 0.5  , the following are the formulas for the water area 

A and the wetted perimeter P: 

𝐴 = 𝐷2 (2) 

𝑃 = 𝐷(1 + 2𝜂)          (3) 

Hence, the hydraulic radius /hR A P=  is: 

( )1 2
hR D




=

+
                                                                                        (4) 

Inserting Eqs. (2) and (4) into Eq. (1) and rearranging results in the following: 

5
8

3
* 3

2

3

2

(1 2 )

Q




=

+

                                                                                 (5) 

where Q* is the relative conductivity expressed as follows: 

*

8

3( / 2)

nQ
Q

i D

=                                                                                                             (6) 

2. For 
𝐷

2
≤ 𝑦𝑛 ≤ 𝐷, i.e., 0.5 1  , from Figure 1b, the geometric properties can be 

expressed for the studied channel as follows: 

The water area A is given by: 

( ) ( )
2

4

D
A    =   (7) 

The wetted perimeter P is governed by the following relationship: 

𝑃 = 𝐷𝜑(𝜂)                                                                                         (8) 

where: 
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( )
( ) ( )

1

2 2 1 1
1

2 cos (2 1)
2

  
 


−

− −
= +

+ − −

          (9) 

( ) 12 cos (2 1)
2


  −= + − −                                                           (10) 

The hydraulic radius /hR A P=  is thus: 

( )
4

h

D
R  =    (11) 

Taking into account Eqs. (7) and (11), Eq. (1) can be rewritten as: 

( ) ( )
5

* 3
2

3

1

2

Q     =     (12) 

The relative conductivity Q* is determined by Eq. (6). 

The problem posed consists of determining the normal depth ny , which amounts to 

evaluating the aspect ratio   and consequently ny D= . When examining the form of 

relations (5) and (12), it appears that the aspect ratio 
 
cannot be determined explicitly. 

Thus, the calculation requires a graphical method or an iterative procedure. 

Approximate equations 

Let Manning's coefficient n be a parameter that can be calculated. This essentially means 

that the relative conductivity *Q  of relation (6) is also a known parameter. To facilitate 

the calculation of the aspect ratio  , the following approximate relations are proposed: 

1. For 0
2

n

D
y   

To directly compute the nondimensional normal depth , we propose the following 

explicit relationship of the exact Eq. (5). 

( )

3 2
5 0.615 5* * 0.16

*0.941

8

3

1 1.08 1 2.05
2

2

Q Q
Q

       = + +          

            (13) 

Eq. (13) is valid over the entire practical range of depth 0 0.5   corresponding to the 

relative conductivity 𝑄∗ such that 0 ≤ 𝑄∗ ≤ 1.26. The maximum relative error 
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( )
100

%

exct prop

exct

 

 

 − 
=     

  

 between the values of   calculated using the proposed 

equation (13) and the exact equation (5) is less than 0.093%. 

2. For 
2

n

D
y D   

In the broad range 0.5 0.86 
 
and corresponding to *1.26 2.32Q  , the following 

approximate relation of   was established: 

𝜂 = 0.0000125𝑄∗9.939
+ 0.2868𝑄∗ + 0.1392   (14) 

The maximum relative error produced by Eq. (14) is less than 0.2%, which is more than 

sufficient for practical applications. 

In relations (5) and (12), the main problem lies not in their implicit nature but in the fact 

that Manning’s coefficient is required to calculate the normal depth sought on which 

depends this coefficient. As a result, it is difficult to know Manning's n since it depends 

on the normal depth sought. 

In practice, the diameter D of the conduit, the absolute roughness  , the slope i of the 

channel, the discharge Q, and the kinematic viscosity  are the known parameters of the 

problem. Since Manning's coefficient n is not given in the problem data, it is impossible 

to determine the relative conductivity *Q  of Eq. (6). To solve the problem with only these 

data, the rough model method appears to be the most suitable computation tool. This is 

what this study's outcome aims to demonstrate. 

COMPUTATION OF NORMAL DEPTH BY THE RMM 

Characteristics of the reference rough model 

To calculate the normal depth, the rough model method (RMM) is applied based on the 

reference rough model illustrated in Fig. 2. 
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                                  (a)                                                   (b) 

Figure 2: Rough model of a vaulted rectangular channel at two flow depths:  

(𝒂)𝟎 ≤ 𝒚𝒏 ≤
𝑫

𝟐
;
(𝒃)𝑫

𝟐
≤ 𝒚𝒏 ≤ 𝑫

 

Fig. 2 schematically shows the normal depth in a vaulted rectangular rough model 

channel. This channel is characterized by the diameter 𝐷 ≠ 𝐷, and the normal depth 𝑦𝑛 

is such that 𝑦𝑛 ≠ 𝑦𝑛 and even 𝑦𝑛 > 𝑦𝑛, and the aspect ratio 𝜂 =
𝑦𝑛

𝐷
≠ 𝜂 =

𝑦𝑛

𝐷
. 

The relative roughness value 0.037

hD


= , where 𝐷ℎ is the hydraulic diameter, is the 

distinctive feature of the rough model. The choice of this value is arbitrary. The relative 

roughness value that was selected is so great that the predominant flow regime is fully 

rough. Thus, according to the Colebrook-White equation (Colebrook, 1939), the friction 

factor is 
1

16
f =  because 𝑅 = 𝑅 tends to an infinitely large value (Achour, 2015). 

To determine the normal depth, we admit the following conditions: 𝑖 = 𝑖; 𝑄 = 𝑄.
 

Applying Eq. (1) to the rough model leads to: 

2

3
1

hQ AR i
n

=   (15) 

where 𝑛 is Manning’s resistance coefficient in the rough model, and its expression is 

(Achour, 2014a): 

1

6R
hn
C

=

 

  (16) 
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According to the RMM, Chezy's coefficient 𝐶 is given by the following equation (Achour 

and Sehtal, 2014): 

𝐶 = 8√2𝑔  (17) 

By inserting Eq. (17) into Eq. (16), we thus conclude: 

1

6

8 2

hR
n

g
=

  

(18) 

According to the ranges of values for the filling rate 𝜂, the flow can be divided into two 

zones. These two zones of flow depths correspond to 0 ≤ 𝜂 ≤ 0.5 and 0.5 ≤ 𝜂 ≤ 1. 

Determination of the normal depth for 0 0.5 η  

The hydraulic parameters of this zone are as follows: 

The following relation governs the wetted area A : 

𝐴 = 𝐷
2

𝜂         (19) 

The formula for the wetted perimeter P  is: 

𝑃 = 𝐷(1 + 2𝜂)          (20) 

Thus, the hydraulic radius /hR A P=  is as follows: 

( )1 2
hR D




=

+
  (21) 

The following can be written by introducing Eq. (21) into Eq. (18): 

1 1

6 6

1

6
8 2

(1 2 )

D
n

g





=

+

  (22) 

By inserting Eqs. (19), (20), and (22) into Eq. (15) and rearranging, one can obtain the 

following: 

3
5

2
* 2

1

2

2

(1 2 )

Q




=

+

  (23) 

where 𝑄
∗
 is the relative conductivity expressed as follows: 
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*

58 2 ( / 2)

Q
Q

gi D
=   (24) 

Since all the parameters of Eq. (24) are known, it is possible to calculate the relative 

conductivity value 𝑄
∗
. The aspect ratio 𝜂 can be calculated for the given value of 𝑄

∗
 by 

using equation (23). 

When both sides of equation (23) are squared, the following is obtained: 

( )

3
*2 52

1 2
Q




=

+
  (25) 

We obtain a third-degree equation in η as follows: 

3 *2 *21 1
0

16 32
Q Q − − =      (26) 

Eq. (26) is a cubic equation that does not contain a second order.  Its discriminant may be 

expressed as follows: 

4
* *2

Δ 1
8 27

Q Q   
= −      
   

  

(27) 

Eq. (27) shows that two cases arise: 

• 𝑄
∗

≥ √27, then 𝛥 ≤ 0. The real root of the third-degree equation in 𝜂 expressed 

by relation (26) is: 

*

cos
32 3

Q 


 
=  

 
  (28) 

where the angle 𝛽 is such that: 

( )
*

3 3
cos

Q
 =   (29) 

• 𝑄
∗

≤ √27, then 𝛥 ≥ 0. The real root of the third-degree equation in 𝜂 expressed 

by relation (26) is: 

*

32 3

Q
ch




 
=  

 
  (30) 

where the angle 𝛽 is expressed as: 
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( )
*

3 3
ch

Q
 =   (31) 

The exact value of the aspect ratio in the rough model is provided by Equations (28) and 

(30). 

Nondimensional correction factor of the linear dimension 

According to the rough model method, all linear dimensions L of a channel and its 

counterpart 𝐿 of a rough model are connected by the following fundamental equation: 

𝐿 = 𝜓𝐿  (32) 

where   is a dimensionless correction factor with a value less than 1, which is 

determined by the following equation (Achour and Bedjaoui, 2006; 2012): 

2

5

8.5
1.35 log

4.75

hD

R





−
  
  
  = − +
  
  

  

  (33) 

where 𝑅is the Reynolds number in the rough reference model, which can be given by: 

4Q
R

P
=   (34) 

Steps for calculating the normal depth 

To calculate the normal depth in a vaulted-shaped rectangular cross-section, when0 ≤

𝑄
∗

≤ 1.41421356, the following data must be given: Q , i ,𝑫,𝜀 and 𝜈. It is important to 

first note that these parameters are practicably measured and that Manning's roughness 

coefficient is not imposed. The following steps are advised: 

1. If we assume 𝐷 = 𝐷, the relative conductivity 𝑄
∗
is given by: 

𝑄
∗

=
𝑄

8√2𝑔𝑖(𝐷/2)5

=
𝑄

8√2𝑔𝑖(𝐷/2)5

 

2. Depending on the sign of the discriminant Δ, use Eq. (28) or Eq. (30) to calculate 

the aspect ratio 𝜂. 

3. Eqs. (20) and (21) give 𝑃 and 𝑅ℎ, respectively. This allows us to calculate the 
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hydraulic diameter as 𝐷ℎ = 4𝑅ℎ and Reynolds number 𝑅 by the use of Eq (34). 

4. Apply Eq. (33) to determine the dimensionless correction factor 𝜓. 

5. Let us use the values of the hydraulic radius 𝑅ℎ and correction factor 𝜓 that have 

been determined to calculate the Manning coefficient n using the following 

relationship (Achour, 2014a): 

8 1

3 6

8 2

hR
n

g


=

    

(35) 

6. After calculating Manning’s coefficient n, calculate the relative conductivity 𝑄∗ 

according to Eq. (6). 

7. With the computed value of the relative conductivity 𝑄∗, determine the aspect 

ratio 𝜂 using the explicit Eq. (13). 

8. Let us solve the problem by the rough model method. The new value of the 

relative conductivity
*

Q  is: 

*

58 2 ( / 2 )

Q
Q

gi D 
=   

9. Based on the sign of the discriminant Δ, we determine the aspect ratio 𝜂 = 𝜂 by 

applying Eq. (28) or Eq. (30), then the normal depth sought 𝑦𝑛 is 𝑦𝑛 = 𝜂𝐷. 

Determination of the normal depth for 𝟎. 𝟓 ≤ 𝜼 ≤ 𝟏 

The hydraulic parameters of this zone are as follows: 

The wetted area A  is governed by the following relation: 

( ) ( )
2

4

D
A    =   (36) 

The wetted perimeter 𝑃 is given by: 

𝑃 = 𝐷𝜑(𝜂)          (37) 

 where: 

1

2(2 1) (1 )
( ) 1

(2 cos (2 1))
2

  
 


−

− −
= +

+ − −

  (38) 
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( ) 12 cos (2 1)
2


  −= + − −           (39) 

The hydraulic radius h

A
R

P
=  is then: 

( )
4

h

D
R  =                                                                                                           (40) 

Inserting Eq. (40) into Eq. (18) leads to: 

1/6
1/6

1/6

1
( )

48 2

D
n

g
  
 

=                                                                                             (41) 

By inserting Eqs. (36), (40) and (41) into Eq. (15) and rearranging, one may write: 

3/2* 1
( ) ( )

2
Q     =

 
                                                                                            (42) 

The relative conductivity 
*

Q  is governed by Eq. (24). 

Eq. (42) is implicit toward the aspect ratio . The known parameter is the relative 

conductivity 
*

Q , and the determination of   is needed. The calculation involves a 

graphical procedure or an iterative method. One way to avoid this is to use the following 

derived explicit relationship: 

9.94* *

0.0000045 0.27847 0.1058Q Q = + +                                                 

(43) 

Eq. 43 was established in the wide range 0.5 0.86   corresponding to the relative 

conductivity 
*

Q  such that 
*

1.414 2.536Q  . The maximum relative deviation 

caused by Eq. (23) is less than 0.19%. 

The calculation demonstrates that, in accordance with Eq. (42), the relative conductivity 

for the entire state 1 =  corresponds to 
*

2.52493430Q = . As shown in figure 3, for 

this value of the relative conductivity 
*

Q , Eq. (42) gives another value of the aspect ratio

0.854516733 = . 
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Figure 3: Plot of Eqs. (25) and (42). () maximum relative conductivity 

corresponding to 𝜼 = 𝟎. 𝟗𝟓 

Eqs. (37) and (40) permit the following writing for the aspect ratio 𝜂 = 0.854516733, 

respectively: 

𝑃 = 2.78813𝐷         (44) 

𝑅ℎ = 0.29483𝐷  (45) 

The hydraulic diameter 𝐷ℎ = 4𝑅ℎ 
is then: 

𝐷ℎ = 1.17932𝐷  (46) 

The diameter 𝑫 is given by Eq. (24) for 𝑄
∗

= 2.52493430. Hence: 

0.4

0.523
Q

D
gi

 
=  

 
 

 

  (47) 

The reference rough model's hydraulic and geometric properties are expressed by 

Equations (44) to (47). These equations will be applied to calculate the required value for 

the normal depth. 

Steps for calculating the normal depth 

To determine the normal depth 𝑦𝑛 sought, when 𝑄
∗

≥ 1.41421356, the following data 

must be given: Q, D, i,𝜀 and 𝜈. It is advised to perform the following steps: 

1. Determine the diameter 𝐷 of the referential rough model using Eq. (47). 

2. With the determined value of 𝐷, the wetted perimeter 𝑃 and the hydraulic 

diameter 𝐷ℎ are provided by equations (44) and (46), respectively. 
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3. In accordance with Eq. (34), compute the Reynolds number 𝑅. 

4. By inserting the values of 𝐷ℎ and 𝑅 in Eq. (33), we obtain the nondimensional 

correction factor 𝜓. 

5. Let us use the values of the hydraulic radius 𝑹𝒉 and correction factor 𝜓 that have 

been determined to calculate the Manning coefficient n by the use of Eq. (35). 

6. After calculating Manning’s coefficient n, calculate the relative conductivity 𝑄∗ 

according to Eq (6). 

7. With the computed value of
 
the relative conductivity 𝑄∗, determine the aspect 

ratio 𝜼 using the explicit Eq. (13). 

8. Let us solve the problem by the rough model method. According to the 

fundamental Eq. (32), apply the new linear dimension 𝐷 =
𝐷

𝜓
 to the referential 

rough model. Then, employ Eq. (24) to calculate the equivalent relative 

conductivity 𝑄
∗
. 

9. Once the value of the relative conductivity 𝑄
∗
 has been calculated, let us use Eq. 

(43), to find the aspect ratio 𝜂 = 𝜂, the required normal depth sought 𝑦𝑛 is 𝑦𝑛 =
𝜂𝐷 

Proposed general formula 

The equation below was obtained for direct computation of the normal depth for the 

vaulted rectangular cross-section (for two zones) by the RMM: 

3
1.0385

* *5

8.235
*

0.3411 0.321
2 2

1 0.009
2

Q Q

Q


   
+   

   
=

 
−  

 

   (48) 

Eq. (48) is valid over the entire practical range of depth 0.05 0.87   corresponding 

to the relative conductivity 𝑄∗ such that *0.0603 2.554Q  . The maximum relative 

error caused by Eq. (48) is less than 0.36% only, which is more than enough for practical 

applications. 
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Steps for calculating the normal depth by the general formula 

When 0 ≤ 𝑄
∗

≤ 1.41421356 

To compute the normal depth ny , the following steps are recommended, provided that 

the parameters 𝑄, i , 𝑫, 𝜀 and 𝜈 are given. 

1. If we assume 𝐃 = 𝐃, the relative conductivity 𝐐
∗
is given by: 

*

5 58 2 ( / 2) 8 2 ( / 2)

Q Q
Q

gi D gi D
= =  

 
2. Depending on the sign of the discriminant 𝛥, use Eq. (28) or Eq. (30) to calculate 

the aspect ratio 𝜂. 

3. Eqs. (20) and (21) give, respectively: 𝑃,
 
𝑹𝒉 . This allows for the calculation of 

the hydraulic diameter by 𝐷ℎ = 4𝑅ℎ and Reynolds number R by the use of Eq. 

(34). 

4. Apply Eq. (33) to determine the dimensionless correction factor 𝜓. 

5. Assign to the rough model the following new linear dimension 𝐷 =
𝐷

𝜓
 according 

to the fundamental Eq. (32). Then, compute the new value of the relative 

conductivity 
*

Q using Eq. (24). 

6. Applying then Eq. (48), results in 𝜂 = 𝜂. 

7. Finally, the required normal depth 𝑦𝑛 is then: 𝑦𝑛 = 𝜂𝐷. 

When 𝑄
∗

≥ 1.41421356 

The following data must be given: Q, D, i,𝜀 and 𝜈. To compute the required normal depth 

𝑦𝑛, the following steps are recommended: 

1. Determine the diameter 𝐷 of the referential rough model using Eq. (47). 

2. With the determined value of 𝐷, the wetted perimeter 𝑃 and the hydraulic 

diameter 𝐷ℎ are provided by equations (44) and (46), respectively. 

3. In accordance with Eq. (34), compute the Reynolds number 𝑅. 

4. By inserting these values of 𝐷ℎ and 𝑅 in Eq. (33), we obtain the nondimensional 

correction factor 𝜓. 

5. 
According to the fundamental Eq. (32), apply the new linear dimension 𝐷 =

𝐷

𝜓
 

to the referential rough model. Then, employ Eq. (24) to calculate the equivalent 
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relative conductivity 𝑄
∗

 

6. By inserting this value of 𝑄
∗
 into Eq. (48), we obtain 𝜂 = 𝜂. The required normal 

depth is then 𝑦𝑛 = 𝐷𝜂. 

APPLICATION 

The application of the RMM to compute normal depth in a vault-shaped rectangular cross-

section is shown in the following examples. 

Example 1 

Compute the normal depth in a vaulted rectangular cross-section for the following data 

using the RMM: 

3 6 2
3 33 10

, 2 , 4.10 , 10 , .
m m

Q D m i
s s

 
−

− −= = = = =  

1. If we assume 𝑫 = 𝑫, according to Eq. (24), the relative conductivity 𝑄
∗
is: 

 

*

5 3 5

3
1.33860293 27

8 2 ( / 2) 8 2 9.81 4.10 (2 / 2)

Q
Q

gi D −
= = = 

  

 

2. According to the calculated value of
 
𝑄

∗
, the aspect ratio 𝜂 in the rough model is 

governed by Eq. (30), along with Eq. (31). The angle 𝛽 is as follows: 

 

( )
*

3 3 3 3
3.88177279

1.33860293
ch

Q
 = = =

 
Leading to 𝛽 = 2.03241903radian 

According to Eq. (30), the aspect ratio 𝜂 in the rough model is then: 

* 1.33860293 2.03241903
0.47854325

3 32 3 2 3

Q
ch ch




   
= =  =   

   
 

3. Using Eq. (20) and Eq. (21), the wetted perimeter 𝑃 and the hydraulic radius 𝑅ℎ 

are: 

( ) ( ) ( )1 2 1 2 2 1 2 0.47854325 3.914173mP D D = + = + =  +  =  

0.47854325
2 0.48903638m

(1 2 0.47854325)(1 2 )
hR D




= =  =

+ +
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The hydraulic diameter 𝐷ℎ = 4𝑅ℎ is then: 

𝐷ℎ = 4𝑅ℎ = 4 × 0.48903638 = 1.95614553m 

4. Using Eq. (34), the Reynolds number 𝑅 is: 

-6

4 4 3
3065781.71

3.914173 10

Q
R

P


= = =


 

5. According to Eq. (33), the nondimensional correction factor 𝜓 was easily 

calculated as: 

2

5

8.5
1.35 log

4.75

hD

R





−
  
  
   − + =
  
  

  
2

50.001

8.51.956145531.35 log 0.77872699
475 3065781.71

−
  
  
− + =  
   
   

 

6. According to Eq. (35), the coefficient n is: 

8 1

8/3 1/63 6
-1/30.77872699 0.48903638

0.01285715m
8 2 8 2 9.81

hR
n s

g

 
= = =


 

7. Considering the determined value of n, the relative conductivity 𝑄∗ is governed 

by Eq.(6): 

*

8 8

33 3

0.01285715 3
0.60986808

( / 2) 4.10 (2 / 2)

nQ
Q

i D −


= = =

 

8. According to Eq. (13), the aspect ratio  is: 

( )

3
2

5 0.615 5
0.16

0.941

8

3

0.60986808 0.60986808
1 1.08 1 2.05 0.60986808

2
2

0.29544459 0.295

      + +         

= 

 

9. The required value of normal depth 𝑦𝑛 is thus: 
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0.295 2 0.59 mny D= =  =
 

10. This step aims to verify the validity of the calculations by determining the 

discharge Q using Eq. (1). The calculated discharge should be equal to the 

discharge given in the problem statement. 

The water area A was easily calculated using Eq. (2) such that: 

2 2 22 0.295 1.18A D m= =  =  

According to Eq. (4), the hydraulic radius hR  is: 

( ) ( )
0.295

2 0.37106918m
1 2 1 2 0.295

hR D



= =  =

+ + 
 

Finally, according to Eq. (1), the discharge Q is: 

2 2 3
33 3

1 1 3
1.18 (0.37106918) 4.10 2.997

0.01285715
h

m
Q AR i

n s

−= =   =   

The estimated discharge, as is apparent, equals the discharge provided in the problem 

statement, demonstrating the accuracy of the computations. 

Let us solve the problem by the rough model method. Let us calculate the new value of 

the relative conductivity: 

( )

*

5 3 5

3
0.7163328 27

8 2 ( / 2 ) 8 2 9.81 4.10 (2 / 2 0.77872699 )

Q
Q

gi D  −
= = = 

   
 

According to the calculated value of 𝑄
∗
, the required value of the aspect ratio 𝜂 is 

governed by Eq. (30), along with Eq. (31). The angle 𝛽 is as follows:  

( )
*

3 3 3 3
7.25382454

0.7163328
ch

Q
 = = =  

 

leading to 𝛽 = 2.66989058radian 

According to Eq. (30), the aspect ratio 𝜂 is then: 

* 0.7163328 2.66989058
0,29422874 0.294

3 32 3 2 3

Q
ch ch


 

   
= = =  =    

   
 

The required value of normal depth 𝑦𝑛 is thus: 

0.294 2 0.588 0.59 mny D= =  =   
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This is indeed the value of ny  calculated in step 9 

Let us solve the problem by Eq. (48), by inserting the calculated value 
*

Q  into Eq. (48). 

This results in the equality of the relative normal depths in the rough model and in the 

current channel, i.e. 𝜂 = 𝜂. For the relative conductivity 𝑄
∗

= 0.7163328, the aspect 

ratio is: 

3
1.0385

* *5

8.235
*

3
1.0385

5

8.235

0.3411 0.321
2 2

1 0.009
2

0.7163328 0.7163328
0.3411 0.321

2 2
0.29473403 0.295

0.7163328
1 0.009

2

Q Q

Q
 

   
+   

   
= =

 
−  

 

   
 +    
   

= = 
 

−  
 

 

This is indeed the value of the aspect ratio   calculated in step 8. 

Example 2 

Compute the normal depth in the vault-shaped rectangular cross-section for the following 

data using the RMM: 

3 6 2
4 44 10

, 3 , 10 , 10 , .
m m

Q D m i
s s

 
−

− −= = = = =  

1. If we assume 𝑫 = 𝑫, according to Eq. (24), the relative conductivity 𝑄
∗
is: 

 

*

5 4 5

4
4.09630566 1.41421356

8 2 ( / 2) 8 2 9.81 10 (3 / 2)

Q
Q

gi D −
= = = 

  
 

Thus, we apply the calculation steps in the following case:
 
0.5 ≤ 𝜂 ≤ 1.

 

2. According to Eq. (47), the diameter D  of the referential rough model is then: 

0.4 0.4

4

4
0.523 0.523 3.63908235m

9.81 10

Q
D

gi −

   
= =  =   

     
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3. Using Eq. (44) and Eq. (46), the wetted perimeter 𝑃 and the hydraulic diameter 

𝐷ℎ are: 

2.78813 2.78813 3.63908235 10.1462347mP D= =  =          

1.179332 1.17932 3.63908235 4.2916426mhD D= =  =  

4. According to Eq. (34), the Reynolds number 𝑅 is: 

-6

4 4 4
1576939.67

10.1462347 10

Q
R

P


= = =


 

5. Using Eq. (33), the nondimensional correction factor 𝜓 is as follows: 

2

5

8.5
1.35 log

4.75

hD

R





−
  
  
   − + =
  
  

  
2

50.0001

8.54.29164261.35 log 0.70988175
4.75 1576939.67

−
  
  
− + =  
   
   

 6. With the previously calculated value of the correction factor 


 and given the 

hydraulic radius 1.07291065m
4

h
h

D
R = = , let us apply Eq. (35) to evaluate 

Manning's coefficient n, that is: 

8 1

8/3 1/63 6
-1/30.70988175 1.07291065

0.01145539m
8 2 8 2 9.81

hR
n s

g

 
= = =


 

7. Considering the determined value of n, the relative conductivity 𝑄∗ is governed 

by Eq. (6): 

*

8 8

43 3

0.01145539 3
1.55415144

( / 2) 10 (3 / 2)

nQ
Q

i D −


= = =  
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8. According to Eq. (14), the aspect ratio  is: 

9.939* *

9.939

0.0000125 0.2868 0.1392

0.0000125 1.55415144 0.2868 1.55415144 0.1392 0.586

Q Q = + +

=  +  + 
 

9. The required value of normal depth ny
is thus: 

0.586 3 0.758  0.76mny D= =  =    

10. This step aims to verify the validity of the calculations by determining the 

discharge Q using Eq. (1). The calculated discharge should be equal to the 

discharge given in the problem statement. 

Eqs. (9) and (10) give, respectively: 

( )
( ) ( ) ( ) ( )

1 1

2 2 1 1 2 2 0.586 1 0.586 1 0.586
1 1

2 cos (2 1 ) 2 cos (2 0.586 1 )
2 2

1.07797866

  
 

 
− −

− −  −   −
= + = +

   
+ − − + −  −   

   

=

 

( ) 1 12 cos (2 1 ) 2 cos (2 0.586 1 )
2 2

 
  − −   

= + − − = + −  −   
   

2.17285957=   

The water area A was easily calculated using Eq. (7) such that: 

𝐴 =
𝐷2

4
𝜎(𝜂)𝜑(𝜂) =

32

4
× 1.07797866 × 2.17285957 = 5.27016655m2 

According to Eq. (11), the hydraulic radius hR  is: 

𝑅ℎ =
𝐷

4
𝜎(𝜂) =

3

4
× 1.07797866 = 0.80848399m

 
Finally, according to Eq. (1), the discharge Q is: 

2 2

43 3
1 1

5.27016655 (0.80848399) 10 3.994
0.01145539

hQ AR i
n

−= =   =  4m3/s 

The estimated discharge, as is apparent, equals the discharge provided in the problem 

statement, demonstrating the accuracy of the computations. 

Let us solve the problem by the rough model method. Assign to the rough model the 

following new linear dimension, according to Eq. (32): 

3
4.22605599m

0.70988175

D
D


= = =  
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According to Eq. (24), the new value of the relative conductivity 
*

Q  is then: 

*

5 5

3

4
1.7392314

4.22605599
8 2 9.81 4.108 2

22

Q
Q

D
gi



−

= = =

   
    

  

 

According to Eq. (43), the aspect ratio is thus: 

9.94* *0.0000045 0.27847 0.1058Q Q = = + +   

          9.940.0000045 1.73923143 0.27847 1.73923143 0.1058 0.591=  +  +   

Therefore, comparing the approximate value of the aspect ratio   from step 8 and the 

value we have just calculated, the relative deviation is as follows: 

Δ 0.591 0.586
100 0.85%

0.591





−
=  =  

The required value of normal depth ny  is thus: 

 
0.591 3 1.77 mny D= =  

 

Let us solve the problem using Eq.48). By inserting the calculated value of 
*

Q  into Eq. 

(48), this results in the equality of the relative normal depths in the rough model and in 

the current channel, i.e.,  = . For the relative conductivity * 1.73923082Q = , the 

aspect ratio is: 

3
1.0385

* *5

8.235
*

0.3411 0.321
2 2

1 0.009
2

Q Q

Q
 

   
+   

   
= =

 
−  

 
3

1.0385
5

8.235

1.73923143 1.73923143
0.3411 0.321

2 2
0.593

1.73923143
1 0.009

2

   
 +    
   

= 
 

−  
 

 

The required value of normal depth ny  is thus: 

 
0.593 3 1.78 mny D= =  
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The deviation between the value of normal depth ny computed in this way and the value 

estimated at step 9 is less than 1.13%. 

CONCLUSION 

The computation of the normal depth in a vault-shaped rectangular cross-section by RMM 

showed the extent of the calculation’s effectiveness and the possibility of doing so without 

the Manning coefficient value in the problem data. 

In this study, the Manning equation is applied to a referential rough model whose 

characteristics are surmounted by the symbol "¯". When 0 0.5  , this resulted in the 

construction of a third-degree explicit relationship between the aspect ratio and the 

relative conductivity, which was analytically solved using hyperbolic and trigonometric 

functions as well as approximate equations (13) and (48). When 0.5 1  , it led to the 

creation of an approximate equation representing the aspect ratio, dependent upon the 

relative conductivity in the referential rough model. The diameter of this is the same as 

that of the full-model state, and the filling rate is 0.854516733 = . The aspect ratio in 

the studied conduit and, accordingly, the normal depth were calculated from the known 

value of the aspect ratio in the rough model. This was made possible due to the 

nondimensional correction factor. The application of the rough model method was 

demonstrated through practical examples, which also demonstrated how simple it was to 

use. 
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