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ABSTRACT 

Due to its horizontal crest in the transverse direction and its inclined upstream and 

downstream faces, whose inclination is well defined, the Crump weir can be classified 

into the category of triangular longitudinal profile weirs, including the Bazin weir. It is 

an intermediate category between that which includes thin-crested weirs characterized by 

reduced thickness and that which includes broad-crested weirs that extend over a given 

length in the streamwise direction. 

In practice, the Crump weir is preferably used as a sill for several reasons. The weir 

reduces the upstream flow velocity by raising the water level, which reduces or even 

avoids erosion. Additionally, the measurement of the upstream flow depth h, counted 

above the weir, is carried out with the greatest precision when the device is used as a flow 

meter. 

The Crump weir as a flow measuring structure has not been studied from a theoretical 

point of view, and only experimental observations have enabled it to be calibrated. The 

resulting stage-discharge relationship is not only empirical but also incomplete since the 

effect of influential parameters, such as h/B, where B is the width of the rectangular 

approach channel, has not been accounted for, which affects the accuracy of the flow rate 

calculation. Only the effect of the relative elevation of the crest weir P* = P/h on the flow 

rate was examined on the basis of observations, where P is the elevation of the crest weir. 

The dimensionless parameter P* reflects the influence of the vertical contraction of the 

flow caused by the weir. 

In this study, it is proven that the ratio h/B accounts for 23.5% as an average effect in the 

calculation of the discharge coefficient Cd and hence of the flow rate Q. The refined model 
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describing this effect is yielded based on the analysis of observations available in the 

literature because current theories are unable to produce a mathematical representation of 

this effect. Unlike h/B, the effect of P* is derived from a rigorous theory based on the 

energy equation, judiciously transformed into dimensionless terms, along with rational 

hydraulic concepts. Therefore, the discharge coefficient relationship resulting from this 

study is a semiempirical formula that can be written symbolically in the following form

)()/( *
21 PfBhfCd = . It is inferred that  is a constant whose appropriate value is 

estimated to be 0.8601, while the symbolic functions f1 and f2 are explicitly defined as 

simple and handy relationships. Compared to recent observations, the previous Cd 

relationship causes a maximum deviation of only 0.864%, resulting in the same maximum 

deviation in the flow rate Q computation. Therefore, it can be considered the most 

accurate and comprehensive Cd relationship ever developed before for the Crump weir 

working under free overflow conditions. This allows the user to estimate the rate Q sought 

with great certainty and confidence. 

Keywords: Crump weir, stage-discharge relationship, flow measurement, semiempirical 

approach, discharge coefficient. 

INTRODUCTION 

The Crump weir belongs to a class between two categories of well-known weirs. The first 

category includes sharp crested weirs, vertical or inclined, whose classification is based 

on the shape of the opening, which can be diverse, such as rectangular or triangular 

notches, which are the most commonly used. They were defined and classified on the 

basis of both a considerable number of observations of flow profiles and in-depth 

discharge coefficient investigations (Rao and Muralidhar, 1963; Bos, 1976; Henderson, 

1966; Bos, 1989). Their length L in the streamwise direction is reduced to a small 

thickness, which must meet well-defined design requirements (Achour et al., 2033; SIA, 

1936). However, more precisely, sharp-crested weirs are classified as such when h/L 

varies between 1.5 and 1.9 depending on the particular h/P, according to Rao and 

Muralidhar (1963), where h is the flow depth above the crest and P is the weir height. 

The second category relates to weirs with finite crest length L in the streamwise direction, 

which are defined quite precisely in the specialist literature (Rao and Muralidhar, 1963; 

Azimi and Rajaratnam, 2009; Bijankhan et al., 2014). Long-crested weirs, narrow-crested 

weirs, and broad-crested weirs are listed in this category, according to the range of h/L. 

Among these weirs, the broad-crested weir is unquestionably the best known and the most 

used not only as a weir but also as a hydraulic jump control structure and compactness of 

stilling basins (Achour and Amara, 2022a). It is currently assumed that it shall be said as 

a "Broad-Crested Weir" any weir freely overflowed by a flow depth h that would vary 

between L/10 and 2L/5. Consequently, the length L of the weir in the streamwise direction 

plays a primordial role in this classification. Moreover, it was observed that the discharge 

coefficient for such a weir is exclusively dependent on h/L, provided that h/P < 1. 
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Additionally, the upstream and downstream faces of these weirs can be vertical, implying 

a rectangular longitudinal profile, or inclined, which results in a trapezoidal longitudinal 

profile. 

This second category of weirs includes rectangular and triangular cross-section crested 

weirs, with or without lateral contraction (Rao and Muralidhar, 1963; Bijankhan et al., 

2014; Achour and Amara, 2022b; Achour and Amara, 2022c; Achour and Amara, 2022d). 

However, the question remains whether the triangular broad-crested weir satisfies the 

aforementioned Rao and Muralidhar requirements or whether other specific hydraulic 

and/or geometric classification conditions must be found for such a weir. 

Between the two aforementioned categories, a third intermediate category could be 

mentioned, which would include Bazin- and Crump-type weirs (Achour et al., 2033; Bos, 

1976; Henderson, 1966; Bos; 1989), which are mainly known for their triangular 

longitudinal profile. This is the only description, based on the geometry, that is known 

today of these particular weirs. Their description has not changed since their creation, in 

such a way as to introduce adapted hydraulic requirements, as was the case for the weirs 

of the first two categories. These weirs are special because they are endowed with neither 

a crest length in the streamwise direction nor a reduced thickness. Their crest is reduced 

to a transverse edge perpendicular to the direction of flow. On either side of this edge, 

these devices have well-defined inclined walls depending on the type considered. Bazin 

and Crump’s weirs are the only structures that can be listed in this third category and 

whose cross sections are rectangular. As they are designed, they are not universal ranges 

since their use as flow measurement devices is restricted to the case of rectangular open 

channels. However, they have practical advantages thanks to the chosen characteristics 

of their triangular longitudinal profile, inducing minor solid deposits upstream of the weir 

as well as the easy evacuation of floating debris. Another significant advantage is that 

when using these weirs as measurement structures, they give the flow rate Q as a single-

valued function of the upstream measured depth h. This aspect of the problem will be 

developed in detail in the appropriate section of the paper as the primary objective of the 

study. 

The Bazin weir has not been very successful in the practice of measuring flows in open 

channels. The main reason lies in the fact that it has been calibrated for a weir height P = 

0.50 m, which is too large to be adapted to the installations of existing factories, including 

supply channels or waste water discharging channels (Agence Financière du Bassin Loire 

et Bretagne, 1970). Since then, no study has corrected this drawback through calibration 

tests to be carried out on much lower crest heights than the original Bazin weir. 

The main difference between the Bazin and Crump weirs lies in the values of the slopes 

of the upstream and downstream faces (Bos, 1976; Henderson, 1966; Bos, 1989; Achour 

et al., 2003). While Bazin adopted four combinations of upstream and downstream slopes, 

Crump limited the structure to a single combination, namely, 1:2 upstream and 1:5 

downstream, giving the weir a basis length of L = 7P. Consequently, the structure can 

sometimes require much space; for instance, for a weir height P = 0.30 m, the weir will 
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extend over a base length of L = 2.10 m, inducing an occupied base surface greater than 

3m2 in the case of a rectangular approach channel that is only 1.50 m wide. 

It is worth noting that available stage-discharge relationships that govern the Crump weir 

are as insufficiently accurate as they are incomplete because they do not take into account 

all the influential parameters, in particular the h/B ratio, whose average influence is 

approximately 23.5% according to our conclusive evidence. 

Therefore, the study intends to derive the discharge coefficient relationship for the Crump 

weir and therefore that of the flow rate, as complete as it is accurate, using a semiempirical 

approach involving both the energy equation and reliable observations available in the 

literature. 

MATERIAL AND METHODS 

Description of the device and the resulting flow 

Figs. 1 and 2 show the perspective diagram and the longitudinal profile of the Crump 

weir, respectively. Fig. 2 also exhibits the resulting flow over the weir working under 

free-flow conditions. The device is intended to measure the flow rate Q conveyed by a 

rectangular channel of width B, as shown in Fig. 1, where the device was deliberately 

denoted DEVICE'. 

 

Figure 1: Perspective diagram of the device denoted DEVICE’ placed in a 

rectangular approach channel. 
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Figure 2: Description of the device and the resulting longitudinal flow profile 

As shown in Figs. 1 and 2, the Crump weir is formed by two flat rectangular plates 

inclined 1:2 upstream and 1:5 downstream; their junction forms, at the top, a horizontal 

edge in the transverse direction, i.e., perpendicular to the direction of flow, corresponding 

to the edge CE in Fig. 1. 

All models of the Crump weir are designed with a 1:2 sloping front face and a 1:5 sloping 

back face, forming a triangular longitudinal profile such as the E'CI profile in Fig. 2. 

Therefore, the lengths L1 and L2 (Fig. 2), the sum of which gives the total length of the 

base of the weir, are such that PL 21 =  and PL 52 = , respectively, where P is the crest 

height. 

As seen in Fig. 2, H is defined as the total head counted above the crest of the weir, which 

is associated with the depth h of the overflowing water nappe. Similarly, V is defined as 

the mean approach flow velocity, whose quantity V 2/(2g) corresponds to the velocity 

head. This quantity is generally unwisely neglected in studies relating to the flow 

measurement, which could lead to significant uncertainties in the calculation of the flow 

rate sought. 

Additionally, as shown in Fig. 2, the flow above the weir crest is assumed to be critical; 

this is the sine qua non condition for the proper functioning of the weir as a flow 

measurement structure. The control section is considered at point C, where the critical 

depth is denoted hc. 

The purpose of setting up the weir in the canal is to raise the upstream water level to reach 

a subcritical regime. Approaching the top of the weir, the flow is accelerated to become 

supercritical along the upstream face of the weir; the transition from subcritical to 

supercritical flow is necessarily accompanied by a critical depth that is assumed to 

manifest at the top of the weir, as indicated previously. 

If the geometry of the device is well respected and its installation is properly executed, 

the flow rate Q is thus determined using only one upstream depth h reading. Thus, the 

flow rate Q is a single-valued function of the upstream measured depth h, which is well 

known as a stage. The resulting single-valued function, known as the stage-discharge 

relationship, can be expressed as Q = f (h), where f is an algebraic function of the stage. 

cc hH
2

3
=h

g

V

2

2

H

P1:2 1:5

L 1 L 2

Q

E'

C

I



Achour B. & Amara L. / Larhyss Journal, 52 (2022), 93-115 

98 

Dimensional analysis and discharge coefficient dependency 

The dimensional analysis is interesting insofar as it provides a functional relationship 

allowing the identification of the influential parameters that affect the sought discharge 

coefficient. Regarding the Crump weir, one may enumerate eight potentially influential 

parameters, namely, the discharge Q, the upstream depth h, the crest height P, the 

rectangular approach channel width B, the acceleration due to gravity g, the density of the 

flowing liquid ρ, the dynamic viscosity μ of the liquid, and the surface tension σ. These 

parameters are interrelated by the following functional relationship: 

These parameters are interrelated by the following functional relationship: 

( ) 0,,,,,,, = PBhgQf             (1) 

With the help of the Vashy-Buckingham π theorem (Langhaar, 1951), one may derive the 

following stage-discharge relationship as a function  of dimensionless parameters: 














=

h

P

B

hhghg
hBgQ ,,,

22/32/1
2/32/1








               (2) 

Considering the well-known form of the weir equation, one can deduce that function  

symbolically expresses the discharge coefficient relationship Cd. Therefore, it is 

emphasized that the two terms in parentheses of the function  are the Reynolds number 

Re and the Weber number We. Consequently, the discharge coefficient Cd is functionally 

written as follows: 









=

h

P

B

h
WRC eed ,,,                   (3) 

Given the turbulent regime of the flow, the Reynolds number Re has no significant effect 

on Cd. Additionally, the effect of the surface tension expressed by the Weber number We 

only appears for low flow rates Q and for very narrow channels with a small width B. 

Considering the aforementioned considerations, Eq. (3) reduces to: 









=

h

P

B

h
Cd ,                    (4) 

It is thus demonstrated that the discharge coefficient Cd of the considered weir depends 

on both h/B and P/h. In the field of flow measurement, it is well known that the 

dimensionless parameter P/h reflects the influence of the vertical contraction of the flow 

induced by the presence of the weir (Bos, 1976, Henderson, 1966; Bos, 1989; Achour and 

Amara, 2022c; Achour and Amara, 2022d). The dimensionless parameter h/B is rarely 

encountered in the stage-discharge relationships that govern flow measurement devices 

in open channels. This does not mean that its influence is insignificant. Quite the contrary, 
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as will be seen in the case of the weir under consideration, it has been highlighted that the 

average effect of h/B on Cd is approximately 23.5%. 

In the next sections, through the judicious use of the energy equation, the effect of P/h on 

the discharge coefficient Cd will be analytically modeled. Unfortunately, the current 

theories available in the literature are not able to do the same for the effect of h/B; thus, 

this will be modeled using observations. Therefore, the function  will be represented by 

a semiempirical relationship, which is easy to handle and has unparalleled accuracy. 

Theoretical discharge coefficient relationship 

Using the energy equation 

The Crump weir is formed of rectangular cross-sections, as shown in Fig. 1; then, the 

critical depth hc is expressed as follows: 

3/1

2

2














=

Bg

Q
hc           (5) 

In agreement with Fig. 1 and assuming the kinetic energy correction coefficient is equal 

to unity, the total head H above the weir crest is written as follows: 

g

V
hH

2

2

+=            (6) 

Using the continuity equation V = Q/A, where A is the water area, Eq (6) becomes the 

following: 

2

2

2 Ag

Q
hH +=             (7) 

The water area A can be written as follows (Fig. 2): 

( )BPhA +=           (8) 

Inserting Eq. (8) into Eq. (7) yields the following: 

( )22

2

2 PhBg

Q
hH

+
+=           (9) 

Additionally, neglecting any kind of head loss, one may assume that the total head H is 

equal to the total critical head Hc, as indicated in Fig. 2. Thus, one may write the following 

equality: 
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( )
cc hH

PhBg

Q
hH

2

3

2
22

2

==
+

+=          (10) 

It is worth noting that the constant 3/2 on the right-hand side of Eq. (10) is an ideal value; 

however, the reality is quite different, as has been shown by a very thorough previous 

study (Khafagi, 1942). The actual observed constant is less than 3/2 depending on the 

value of the angle of inclination formed by the free surface of the falling water nappe with 

respect to the horizontal. 

For instance, if the free-surface inclination is approximately 19°, then, using simple 

theoretical considerations, one may derive that the constant will take the value 1.48 

instead of the value 1.50 consistently being admitted regardless of the approach flow 

conditions. The experimental verification of Khafagi (1942) showed clear evidence of 

this discrepancy. 

Additionally, since the finding of this important result in the 1940s, no study has been 

carried out to examine the influence of this discrepancy on major hydraulic problems, 

including those related to the field of flow measurement, which is often based on the 

principle of critical flow. 

Considering Eq. (10), the following is extracted: 

( )
ch

PhBg

Q
h

2

3

2
22

2

=
+

+           (11) 

Eliminating the discharge Q between Eqs. (5) and (11) results in the following: 

( )
c

c
h

Ph

h
h

2

3

2
2

3

=
+

+          (12) 

Let us define the following dimensionless parameters: 

h

P
P =*

          (13) 

ch

h
h =*

        (14) 

Thus, Eq. (12) can be rewritten in the following dimensionless form: 

( ) 2

3

12

1

2*2*

* =

+

+

Ph

h          (15) 

After some manipulations and arrangements, Eq. (15) is reduced to the following cubic 

equation in h*, including a quadratic term: 
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( ) 2*2*3* 1
2

1

2

3 −
++− Phh         (16) 

What emerges from Eq. (16) is that the relative depth h* depends solely on the relative 

crest height P*. 

Eq. (16) has three real roots, of which only one satisfies the physical condition h* > 1 

since h > hc. Using the solving method described by Spiegel (1974), the real root of Eq. 

(16), which satisfies the physical meaning of the problem, regardless of the P* value, is 

the following: 

( )
2

1
cos

3

1
cos 1* +








= − h          (17) 

where the dimensionless parameter ψ is expressed as follows: 

( ) 2*121
−

+−= P           (18) 

Additionally, eliminating the critical depth hc between Eqs. (5) and (14) results in the 

following discharge Q relationship: 

2/32/3*2
2

2
hBhgQ

−
=                                        (19) 

Given that the discharge coefficient of any device can be defined as the ratio of the actual 

discharge to the theoretical discharge, Eq. (19) can be written in the following well-known 

form of the weirs stage-discharge relationship: 

2/32 hBgCQ d=         (20) 

where Cd is the discharge coefficient of the weir under consideration. Comparing Eqs. 

(19) with (20) yields the following discharge coefficient relationship: 

2/3*

2

2 −
= hCd         (21) 

Combining Eqs. (17) and (21) results in the following: 

( )
2/3

1

2

1
cos

3

1
cos

2

2
−

−









+







= dC         (22) 

Eq. (22) expresses the theoretical discharge coefficient of the Crump weir for which the 

known parameter in practice is P*, which allows computing the parameter ψ according to 

Eq. (18). Additionally, Eq. (22) implicitly reflects the effect on the discharge coefficient 

Cd of the vertical contraction that the flow undergoes due to the weir. 
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It is planned that the reliability and validity of Eq. (22) will possibly be corroborated using 

the observations available in the literature or corrected if necessary. 

Using the kinetic factor 

The total H expressed by Eq. (6) can be written in the following form: 

hhH +=           (23) 

where δ is a dimensionless parameter representing the fraction of the head in relation to 

the kinetic energy. In other words, one may write  as follows: )2/(2 hgV= . Thus, to 

better understand the physical significance of the kinetic factor, let us write it as
2)2/( hgV= ; hence, one may observe that it corresponds to the ratio of the actual 

mean flow velocity to the ideal flow velocity given by Torricelli. Moreover, when the 

conditions of the critical flow are satisfied in the approach channel, corresponding to the 

ratio 1/ =hgV , P* = 0, and h* = 1, then it can be derived that  = ½, which is the 

greatest value that the kinetic factor  can reach. 

Eq. (23) can be rewritten in the following form: 

( )+= 1hH          (24) 

Additionally, writing Eq. (9) in the form of Eq. (24) results in: 

( )22

2

2 PhhBg

Q

+
=         (25) 

Furthermore, when combining Eqs. (10) and (24), one may derive the following: 

( )hhH c +== 1
2

3
          (26) 

When eliminating the critical depth hc between Eqs. (5) and (26), this results in the 

following: 

( ) 332
3

2 1
3

2
hBgQ +








=         (27) 

Furthermore, eliminating the discharge Q between Eqs. (25) and (27) yields the 

following: 

( )

( )22

332
3

2

1
3

2

PhhBg

hBg

+

+








=



         (28) 
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Introducing the dimensionless parameter P* defined by Eq. (13) and simplifying, Eq. (28) 

reduces to the following: 

( )

( ) 2*

33

1

1

3

2

2

1

P+

+








=


         (29) 

Let us assume ξ governed by the following relationship: 

( ) 2*1
4

27
P+=         (30) 

Thus, Eq. (29) is reduced to the following: 

( ) 01
3

=−+              (31) 

Eq (27) is a cubic equation with a quadratic term, expressed as: 

( ) 0133 23 =+−−+          (32) 

Eq. (28) admits three real solutions, only one of which satisfies the physical condition 

<1. 

Using the third-degree solution method described by Spiegel [16], the solution sought is 

as follows: 

( ) 1
3

4
cos

3

1
cos3 11 −








+−= −− 

          (33) 

where 

( ) 1*1
−

+= P         (34) 

However, when rewriting Eq. (27) in the form of Eq. (20) results in the following Cd 

relationship: 

( ) 2/3
2/3

1
3

2

2

1
+








=dC         (35) 

Inserting Eq. (33) into Eq. (35), the final relationship governing the discharge coefficient 

Cd is as follows: 

( )
2/3

11

3

4
cos

3

1
cos2

















+−= −− 

dC                       (36) 
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Although derived from two different methods, Eqs. (22) and (36), however, give the same 

result. 

The kinetic factor  is a parameter that studies on flow measurement tend to neglect, 

which could lead to unsuitable results. According to Eq. (35), if the approach flow 

velocity were to be neglected, i.e.,  → 0, regardless of the given value of P*, then the 

discharge coefficient of the Crump weir would be considered constant, such as: 

3849.0
3

2

2

1
2/3

=







=dC           (37) 

However, for the sake of rigor, the kinetic factor  is equal to 0 only for P*→ , according 

to Eq. (34) for  → 0. Thus, under these conditions, Eq (36) gives Cd → 0.3849 for the 

Crump weir, which seems to be in disagreement with what is observed on the broad-

crested weir, for which Cd = 0.3849 for P* → 0 (Bolshakov, 1984). According to Eq. (36) 

along with Eq. (34), the discharge coefficient Cd of the Crump weir is 0.7071 for P* → 0. 

In reality, there is no disagreement between the observations made on the discharge 

coefficients of the two devices for P* → 0. Under this limit condition, the discharge Q 

through the broad-crested weir can be written as 2/323849.0 HBgQ = , where H is 

the total head over the weir, including the velocity head. Additionally, the critical flow 

condition prevailing on the broad-crested weir allows us to write that chH )2/3(= .  

Thus, the discharge Q can be rewritten as 2/32/3 2)3/2(3849.0 hBgQ = , which has 

the same form as Eq. (20), meaning that
2/3)2/3(3849.0=dC . Therefore, one may 

finally derive that Cd = 0.7071 corresponding to the same value of the Crump weir 

discharge coefficient obtained for the same limit condition P* → 0. 

In any case, it is not recommended to neglect the kinetic factor, as it does not reflect 

reality. As seen in the last column of Table 1, this simplifying assumption would generate 

significant deviations in the calculation of the discharge coefficient Cd, depending on the 

P* value. 

Additionally, Table 1 shows that the kinetic factor  decreases with the increase in the 

relative crest height P* of the weir. Furthermore, as previously indicated, the kinetic factor 

 is less than ½ for P* > 0 or equal to ½ for P*= 0 or h*=1 according to Eq. (17) along 

with Eq. (18), i.e., at the critical flow condition in the approach channel. 

What Table 1 reveals most importantly is that the kinetic factor  ought not to be 

neglected, regardless of the value of P* involved, because the deviations that could be 

caused in the calculation of Cd are significant. The deviations reported in the last column 

of Table 1 also correspond to those caused in the calculation of the flow rate Q according 

to Eq. (20). Such deviations are not often tolerated in many practical situations, especially 

those that require high accuracy in the flow rate calculation. 
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Table 1: Values of the kinetic factor  for some values of the relative crest height P* 

of the weir according to Eq. (29) 

P* 
 

Eq. (29) 
2/3)1( +  

dd CC /  

(%) 

0 0.5 1.83711731 83.71 

0.2 0.161003 1.25097898 25.98 

0.4 0.100833 1.15500047 15.50 

0.6 0.071115 1.1085471 10.85 

0.8 0.053456 1.08124622 8.12 

1 0.041889 1.06348698 6.35 

1.2 0.033821 1.05115806 5.11 

1.4 0.027936 1.04219531 4.22 

1.6 0.023497 1.03545174 3.54 

1.8 0.020056 1.03023434 3.02 

2 0.017332 1.02611033 2.61 

2.2 0.015134 1.02278667 2.28 

2.4 0.013335 1.02006904 2.00 

2.6 0.011842 1.01781548 1.78 

2.8 0.010589 1.01592547 1.59 

3 0.009526 1.01432298 1.43 

Incident Froude number 

The Froude number is a dimensionless parameter describing flow regimes in open 

channels. It is defined as the ratio of inertia forces to gravitational forces (Bos, 1976; 

Henderson, 1966, Cow, 1959), meaning that it is a parameter measuring the ratio of the 

inertia force on an element of fluid to the weight of the fluid element. The Froude number 

is relevant in open-channel flow problems where the weight, related to gravitational force, 

of the flowing water is an important force. This is the current case that concerns the 

upstream flow in the approach channel, which is characterized by a predominance of 

gravitational forces compared to inertia forces, meaning that the flow is subcritical, 

resulting in an incident Froude number less than unity. In a subcritical state, the flow is 

controlled from downstream, meaning that any disturbance that occurs at a downstream 

point is transmitted upstream. In the case that concerns the present study, the disturbance 

is reflected by the presence of the weir; therefore, a close relationship between the 

characteristics of the weir and the incident Froude number is expected. 

Additionally, in the field of flow measurement in open channels, the user must ensure an 

upper limit value of the incident Froude number to prevent waves from disturbing 

accurate upstream depth readings. There are no in-depth studies on this subject, and only 

experimentation recommends that the incident Froude number be less than 0.50 (Agence 

Financière du Bassin Loire et Bretagne, 1970). 
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Let us define the incident Froude number of the upstream flow by Fo, corresponding to 

the depth (h + P) in Fig. 1. Thus, one may write the following: 

( )Phg

V
F

+
=o         (38) 

Using the continuity equation V = Q/A, where the wetted area A is A = B(h + P), Eq (38) 

becomes the following: 

( ) 2/3o
PhBg

Q
F

+
=         (39) 

After some manipulations, Eq. (39) can be rewritten as follows: 

( ) 2/3*2/3
o

1 PhBg

Q
F

+

=          (40) 

Combining Eqs. (5), (14), and (40) yields the following: 

( )  2/3**
o 1

−
+= PhF         (41) 

Inserting Eq. (17) into Eq. (41) results in the following: 

( ) ( )
2/3

*1
o 1

2

1
cos

3

1
cos

−

−









+







+








= PF          (42) 

As the dimensionless parameter ψ depends only on the relative height P* of the weir in 

accordance with Eq. (18), Eq. (42) indicates that the incident Froude number Fo depends 

solely on P*, meaning that it is fully controlled by the relative height of the weir, as 

expected. 

The variation in the incident Froude number Fo as a function of P* is represented in Fig. 

3 according to Eq. (42). 
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Figure 3: Variation in the incident Froude number Fo against P* according to 

Eq.(42) 

As seen, the greater the relative height P* increases, the greater the incident Froude 

number Fo decreases. For P* → 0, the incident Froude number is Fo → 1, meaning that 

the upstream flow depth tends to become critical. In addition, if the recommendations 

reported in the literature were to be respected, advising Fo less than 0.50, then the relative 

height P* of the weir to be considered should be greater than 0.22, as indicated in Fig. 3. 

On the other hand, Eq. (38) can be rewritten in the following form: 

( ) 2/1*
o

1 Phg

V
F

+

=         (43) 

Additionally, it was previously deduced that the kinetic factor  is such that 
2)2/( hgV= , which allows us to transform equation (43) as follows: 

*o
1

2

P
F

+
=


                      (44) 

That is, 

( ) 2
o

*1
2

1
FP+=           (45) 

This relationship relates the kinetic factor  to the incident Froude number Fo. When the 

upstream flow tends to be critical, corresponding to P* → 0 and Fo → 1, Eq. (45) gives  

→ ½, which is the greatest value that the kinetic factor  can reach, as stated in one of the 

previous sections, using, however, a different approach. 

If the incident Froude number Fo was to be limited to 0.50, corresponding to the lower 

limit value P* = 0.22, then Eq. (45) shows that the kinetic factor  should not exceed the 

upper limit value of 0.1525. 
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RESULTS 

This section aims to validate or possibly correct the relationships derived from the 

previously suggested theoretical approach. The observations available in the literature 

that are the aptest to be exploited are the twenty-three experimental values of the pair (Q; 

h) provided by Zuikov (2017). These were collected on a Crump weir with a weir height 

P = 0.07 m and tested in a rectangular approach channel with a width B = 0.311 m. The 

flow rate Q was varied in the range [1.45 l/s; 31.81 l/s], corresponding to the following 

range of variation [1.71 cm; 12.30 cm] of the resulting flow depth h. Table 2 gathers the 

experimental data of Zuikov (2017) used during the present study. 

With the help of the experimental values of the depth h given in Table 2, as well as the 

weir height set at P = 0.07 m, the experimental dimensionless parameter P* was calculated 

by Eq. (13), allowing us to deduce the corresponding values of the parameter ψ using Eq. 

(18). Thus, introducing the computed values of ψ into Eq. (17) resulted in the theoretical 

values of h*
Th, where the subscript “Th” denotes “Theoretical”. On the other hand, the 

experimental values of the discharge Q given in Table 2 along with the width B = 0.331 

m of the approach channel were used to calculate the resulting critical depth hc values in 

accordance with Eq. (5). Thus, inserting the computed values of hc as well as the 

experimental values of the depth h given by Table 2 into Eq. (14) yields the values of 

h*
Exp, where the subscript “Exp” denotes “Experimental”. Finally, h*

Exp and h*
Th are 

plotted in Fig. 4 against ψ. 

Table 2: Zuikov's observations (2017) collected on a Crump weir 0.07 m in height 

Run Q (m3.s-1) h (m) 

1 0.00145278 0.0171 

2 0.00280833 0.0263 

3 0.00417778 0.0341 

4 0.00554167 0.0407 

5 0.00699444 0.0478 

6 0.00829722 0.0528 

7 0.00972222 0.0586 

8 0.01110556 0.0641 

9 0.01248611 0.0688 

10 0.01393611 0.0737 

11 0.01523889 0.0781 

12 0.0167 0.0825 

13 0.01804722 0.0863 

14 0.01942222 0.0908 

15 0.02088056 0.0948 

16 0.02226944 0.0987 

17 0.02365278 0.1026 

18 0.02504167 0.106 



Accurate Discharge Coefficient Relationship for the Crump Weir 

109 

19 0.02641944 0.1093 

20 0.02786111 0.113 

21 0.02923889 0.1165 

22 0.03054722 0.1195 

23 0.03181667 0.123 

 

 

Figure 4: Variation in the experimental and theoretical relative depths h* as a 

function of ψ 

First, Fig. 4 is able to provide reliable indications regarding the quality of Zuikov's 

observations (2017). Thus, it can be observed that some measurement points deviate 

somewhat from the general trend of the curve, which means that they are marred by an 

error, probably due to the reading of the depth h, the flow rate Q, or even both. However, 

Fig. 4 indicates that, overall, Zuikov's observations [19] are of sufficiently high quality to 

enable reliable analysis. 

The theoretical values of h*, computed using Eq. (17) along with Eq. (18), are greater than 

those derived from Zuikov’s observations (2017). The striking observation that one must 

be drawn from Fig. 4 is related to the resulting curves whose variation follow an almost 

similar evolution, as if, at first sight, they are just shifted by a certain constant. The 

calculation somewhat confirms this observation since deviations between theoretical 

values of h* according to Eq. (17) and the experimental values according to Zuikov's 

observations vary in the following restricted range [12%; 14%]. Moreover, the ratio 

h*
Exp/h*

Th varies between 0.860 and 0.879. 

This almost constant shift between the theoretical and experimental curves is also 

observed in the variation of discharge coefficients Cd, as shown in Fig. 5. The 

experimental discharge coefficient was calculated according to Eq. (20) for Q = QExp and 

h = hExp, while the theoretical discharge coefficient was derived from Eq. (22) along with 

Eq. (18) for P* = P*
Exp. 
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Figure 5: Variation in the experimental and theoretical discharge coefficients Cd as 

a function of the relative weir height P* 

An in-depth study led us to conclude with certainty that the deviations observed in the 

experimental and theoretical values of h*, and hence those of Cd, are largely due to the 

unsuspected effect of the relative depth h/B that previous studies have not accounted for. 

Calculations revealed that the average effect of h/B on the flow coefficient Cd could be 

estimated at 23.5%. 

Two formal suggestions can be made to the user. The first one, if preferred, consists of a 

simplified approach to derive a stage-discharge relationship for the Crump weir that gives 

a fast result along with acceptable accuracy. For this, it is recommended to consider the 

effect of h/B on h*, and hence on the flow rate Q, as an average causal effect that occurs 

through a constant. This corresponds to the average value of all the h*
Exp/h*

Th ratios 

involved, resulting in a value of 0.8687. Thus, one may write the following: 

8687.0
*

*



Th

Exp

h

h
        (46) 

Combining Eqs. (21) and (46) results in the following final discharge coefficient 

relationship: 

2/3*8733.0
−

= hCd         (47) 

Inserting Eq. (17) governing h* into Eq. (47) yields the following: 

( )
2/3

1

2

1
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−
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Let us recall that the parameter ψ is given by Eq. (18) for the known value of P*. It is 

worth noting that Eq. (48) is valid in the following experimental ranges: 

0.569  P*  4.093, 0.055  h/B  0.395 

The maximal deviation caused by Eq. (48) is 1.708%, which also corresponds to the 

maximal deviation caused in the flow rate Q computation according to Eq. (20). This 

maximum deviation is much lower than the maximal deviation value of 4.909% caused 

by the recent empirically derived stage-discharge relationship available in the literature 

(Zuikov, 2017), as reported in Table 3. 

The second formal suggestion is the most rigorous, inducing much more accurate results, 

although it requires additional computation. It no longer considers an average causal 

effect of h/B on h*, but it relies on a more elaborated and refined model of correction of 

h* as a function of h/B, such as writing the following: 

*

0252.0
337.1

* 936.118776.0 ThExp h
B

h
h






















−=         (49) 

Thus, when considering Eqs. (17) and (49), the relative depth h* is then expressed as 

follows: 
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h           (50) 

Eq. (50) causes a maximum deviation of 0.573% in the h* calculation, which corresponds 

to a maximum deviation in Cd computation of 0.864% according to Eq. (21). This finding 

was corroborated by an in-depth analysis of the observations provided by the literature 

(Zuikov, 2017). With the help of Eq. (50), Eq. (41) gives the appropriate value of the 

incident Froude number Fo for the given value of the relative weir height P*. 

It is worth noting that the maximal deviation in the h* computation, which was 14% as 

previously mentioned, dropped to only 0.573%, which reveals the importance of the effect 

of h/B on h*and hence on the discharge coefficient Cd. It must be noted that the h* 

correction model expressed by Eq. (50) is also valid in the aforementioned ranges of P* 

and h/B. Therefore, when considering both Eqs. (21) and (50), the discharge coefficient 

Cd of the Crump weir is written in the following final form: 
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It is useful to remember that the parameter ψ is given by Eq. (18) for the known value of 

P*. Eq. (51) is a semiempirical relationship because the effect of h/B on the discharge 
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coefficient Cd has been supported and modeled using experimental data available in the 

literature (Zuikov, 2017). 

As already indicated, the maximum relative error caused by Eq. (51) on the calculation 

of Cd is 0.864%, which also corresponds to the maximum deviation caused in the 

calculation of the flow rate Q according to Eq. (20). 

Additionally, it should be noted that both terms "Precision" and "Accuracy" are often 

used confusingly in many studies since the term "Deviation" is not clearly defined or 

interpreted incorrectly. Deviation or relative error (RE), considered herein, does not refer 

to the precision of a measurement, which is defined as the ratio of the absolute error of a 

measurement to the measurement being taken (Agresti, 1990; Vogt and Johnson, 2015; 

Abramowitz and Stegun, 1972). The RE is used herein to describe accuracy, specifically 

how accurate the semiempirical Eq. (51) is, which gives expected or accepted Cd values 

when compared to Cd experimental values estimated using Eq. (20) for Q = QExp and h = 

hExp. Thus, the appropriate formula used herein to compute RE is the following: 

100(%)
,

,,


−
=

Expectedd

ExpecteddalExperimentd

C

CC
RE           (52) 

where the vertical bars denote absolute values. 

Fig. 6 shows the distribution of deviations induced by Eq. (47) in the calculation of the 

discharge coefficient Cd plotted against the relative discharge Q/[gB5]1/2. As seen, 100% 

of the deviations are less than 0.865%, which allows us to state, with complete assurance, 

that the derived semiempirical Eq. (47) governing the discharge coefficient of the Crump 

weir is highly accurate. Moreover, Eq. (51) is incomparably more accurate than the 

formulas available in the literature (Zuikov, 2017; Filippov and Brakeni, 2007; RF State 

Standard MI 2406–97, 1997). This is confirmed by Table 3 reporting deviations caused 

by the authors’ Eq. (51) and those induced by the last developed formula disclosed in the 

literature. 

 

Figure 6: Deviations in the discharge coefficient Cd computation caused by Eq. (51) 

0
0

0.15

0.30

0.45

0.60

0.75

0.90

0.025 0.05 0.075 0.10 0.125 0.15 0.175 0.20

Max. 0.865(%)
d

d

C

C

5Bg

QExp



Accurate Discharge Coefficient Relationship for the Crump Weir 

113 

Table 3: Comparison between deviations in the Cd computation of the Crump weir 

induced by Eq. (51) and the Zuikov relationship (2017) 

Reference 
Deviation (%)/ dd CC  Validity ranges 

Minimum Maximum Average 
0.569  P*  4.093 

0.055  h/B  0.395 
Eq. (51) 0.00061 0.864 0.302 

Zuikov (2017) 0.0445 4.909 1.429 

CONCLUSION 

The Crump weir, which is of practical use as a measuring structure, has been the subject 

of both theoretical and empirical investigations. The main objective was to determine the 

discharge coefficient relationship of such a device and hence the resulting stage-discharge 

equation. 

Dimensional analysis revealed that the P/h and h/B ratios are the only influential 

parameters, where h is the upstream depth of the flow above the weir crest, B is the width 

of the approach rectangular channel, and P is the height of the weir. 

The influence of the first parameter on the discharge coefficient Cd of the device was 

modeled by a rigorous analytical approach based on the energy equation presented in 

dimensionless terms. Particular care was taken to include the effect of the approach flow 

velocity. However, the advocated theoretical approach was not able to model the effect 

of the second influential parameter, i.e., h/B. For this, it was called upon observations 

available in the literature to provide an accurate model describing the effect of h/B. 

Thus, the discharge coefficient Cd relationship governing the Crump weir has been built, 

which causes a maximum deviation of only 0.864%, allowing us to henceforth rank the 

Crump weir among the most accurate flow measurement structures. The resulting Cd 

relationship, whose accuracy is probably unrivalled with regard to the results reported in 

the literature, was presented as a product of a constant and two functions f1 and f2 

dependent on h/B and P*, respectively. 

If the experimental data concerning the Crump weir were available for various values of 

the weir height P, then it would have been interesting to check whether the model 

describing the effect of the second influential parameter would have been more precise 

by considering the quantity (h + P)/B instead of h/B. This issue could be considered in 

future studies. 
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