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ABSTRACT 

A simple analytical solution to the problem of dividing manifold flow has been developed 

in the present study. Based on simplifying hypotheses accepted in practice and using 

energy principle considerations, differential equations for pressure head variation over 

the manifold are derived for both turbulent and laminar flow regimes in the pipe and 

lateral port orifices. From that, simple analytical expressions are obtained for solving 

practical problems such as variations in the pressure head, residual flow, and lateral port 

flow distribution. A comparison with literature results related to an irrigation engineering 

problem shows excellent agreement despite the simplicity of the model. Additionally, a 

parametric analysis concerning the decay rate of the pressure head for both flow regimes 

is performed for illustration. 

Keywords: Spatially varied flow, Manifold problem, Analytical solution. 

INTRODUCTION 

Basically, a manifold consists of a main pipe (called a barrel) along which numerous 

junctions of small pipes or ports are placed to allow a flow distribution as a dividing 

manifold or collect flow as a combining manifold (Larock et al., 2000). Manifold flow 

problems are present in several applications, such as irrigation systems, water supply 

networks, and even in chemical engineering. 

The main issue facing practical designers when designing a manifold is the strong 

interdependence of flow parameters, mainly the flow in the barrel, lateral flow through 
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each port, and the pressure head available at the considered point. Indeed, the lateral flow, 

considered an orifice flow, depends solely on the pressure head, which is a function of 

the flow rate in the manifold pipe at the considered section. The latter, called residual 

flow depends on the lateral issuing flow from the manifold entrance. It becomes obvious 

that the problem is far from the classical algebraic equations governing constant flow pipe 

calculations, but rather a differential problem that relates a variable to its variation rate. 

Classically, to drastically simplify the problem, the first attempt to approach the problem 

consists of assuming a constant and uniform lateral flow at each orifice. This assumption 

degenerates the problem into a simple quadrature where a polynomial expression of the 

third degree is obtained (Nalluri and Featerstone, 2016). However, the uniformity of 

lateral flows is the main weakness of this approach.  

To enhance the former approach, several analytical solutions have been proposed by 

many authors in which different modeling hypotheses are adopted but consider lateral 

flow as dependent on the local pressure head. One of the early contributions is due to 

Acrivos et al. (1959), where a second-order nonlinear differential equation is obtained 

and numerically solved for dividing and combining manifolds. Warrick and Yitayew 

(1987; 1988) considered both velocity head losses and variable discharge along the 

manifold in their analysis. The appropriate second-order nonlinear equation is solved 

analytically for two flow regimes, laminar and fully turbulent. Scaloppi and Allen (1993) 

analyzed the effect of ground slope and velocity head on pipeline hydraulics and an 

alternate simplified procedure that neglects velocity head effects was also presented. 

Valiantzas (1998; 2002) derived an analytical energy line for a single-diameter lateral, 

taking into account the effect of the number of outlets. Yıldırım (2007) presented an 

analytical procedure in which energy relations are improved based on the average friction 

drop approach with a simple exponential function to express the nonuniform outflow 

concept. More recently, Liu et al. (2017) analyzed a perforated fluid distribution pipe by 

the momentum equation for variable mass flow with a variable exchange coefficient and 

variable friction coefficient. 

This simple literature survey shows that relying on energy principle considerations and 

other simplifying assumptions related to flow resistance, such as orifice flow exponent 

and outflow uniformity, more or less complicated analytical solutions have been obtained, 

allowing the solution of problems encountered in practical applications. Principally, these 

problems are how the pressure head, flow through lateral ports and carried flow within 

the main pipe vary throughout its length. 

This paper aims to present a simplified analytical solution to the dividing manifold flow 

problem to solve practical hydraulic design issues with a good degree of accuracy. The 

theoretical analysis focuses on a horizontal manifold with a very large outlet number. 

Both turbulent and laminar flows are analyzed, considering a constant friction factor. The 

results are compared with an example taken from the literature for pressure head and flow 

variation along the main pipe. The present analytical solution forms a simple and direct 

approach, especially for design analysis compared to previous heavy numerical and/or 

analytical procedures. 
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THEORETICAL ANALYSIS 

Let us consider a manifold pipe of constant diameter D and length L having equally 

spaced circular exit ports, all of the same diameter d (Fig. 1). The manifold is connected 

upstream to a tank or a reservoir under a total head H, and the downstream end of the 

main is a dead end. The exit flow rate from each port of the circular section is:  

ghSCq d 2=  (1) 

where q = q(x) is the flow rate of given exit ports along the manifold, h = h(x) is the 

driving head, which is the vertical distance from the centerline of the port to the local 

hydraulic grade line above that port (Fig. 1), S is the cross-sectional area of the exit port, 

g is acceleration due to gravity, and 
dC  is the discharge coefficient, taking account of 

different energy losses through the orifices and eventually lateral small pipes such as 

branches and secondary pipes. Here, in Eq. (1), the flow from the lateral ports is presumed 

to exit as a jet into the atmosphere. 

 

Figure 1: Definition sketch of the manifold flow problem 

Considering an infinite number of exit ports spaced at an infinitesimal distance dx, the 

elementary head loss dJ along the manifold is expressed by the Darcy-Weisbach 

relationship (1854) as follows:  

dxQ
Dg

f
dJ x

2

52

8


=                                                                                                        (2) 

where f represents the friction factor, D is the manifold diameter, and Qx = Qx(x) is the 

residual flow rate in the manifold at the considered exit which can be expressed as:   
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On the other hand, the total discharge transited through the manifold QT is: 

( )=
L

T dxxqQ
0

                                                                                                                (4) 

Eq. (3) reads then: 

( ) ( ) −=

xL

x dxxqdxxqQ
00

                                                                                              (5) 

Combining definite integrals, Eq. (5) becomes: 

( )  ==

L

x

L

x

x dxhKdxxqQ                                                                                             (6) 

where gSCK d 2= .  

On the other hand, according to the Bernoulli theorem, conservation of the total energy 

along the manifold requires the following equality:    

J
gA

Q
hH x ++=

2

2

2
                                                                                                        (7) 

where 42DA = denotes the manifold cross-section area. Differentiating Eq. (7) with 

respect to the streamwise x-coordinate and neglecting convective acceleration (gradient 

of the kinetic energy), one obtains:    

0=+=
dx

dJ

dx

dh

dx

dH
                                                                                                       (8) 

Combining Eqs. (2) and (8) results in: 

02 =+ xCQ
dx

dh
                                                                                                               (9) 

where 
5²8 DgfC = is the elementary hydraulic resistance of the manifold. Replacing 

the expression of Qx from Eq. (6) into Eq. (9) gives: 

0

2

=







+  dxhKC

dx

dh
L

x

                                                                                            (10) 

The problem of manifold flow is then governed by Eq. (10), which is a nonlinear first-

order differential equation due to the varying coefficients K and C. The solution of Eq. 
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(10) allows the determination of pressure head variation along the manifold and, 

consequently, lateral and residual flow rates.     

ANALYTICAL SOLUTION 

To derive an analytical solution to Eq. (10), one must consider constant coefficients, that 

is, admit that both the friction factor f and the discharge coefficient 
dC are independent 

of the flow along the x-coordinate. In this assumption, one considers that flow in the 

manifold is under a rough turbulent regime such that f can be considered constant at least 

along most of the manifold length.  

Considering these simplifying hypotheses, integration of Eq. (10) is straightforward and, 

for the initial condition h (0) = H, the exact solution is then as follows: 

( ) )3/( 222 xxLLxCKHexh +−−=                                                                              (11) 

Eq. (11) shows that the hydraulic grade line from the reservoir to the dead end of the 

manifold is of an exponential decay form. It is easy to derive from Eq. (11), at the dead-

end location x = L, that: 

( )
0=

=Lxdx

xdh                                                                                                               (12) 

Eq. (12) shows that the hydraulic gradient, and thus the discharge, is zero. On the other 

hand, the residual pressure at the dead end of the manifold is: 

( ) 3/32LCKHeLh −=                                                                                                     (13) 

For convenience, one can express Eq. (11) in a dimensionless form. Adopting the 

following normalization: 

H

h
h =*                                                                                                                      (14a) 

L

x
x =*                                                                                                                       (14b) 

The exact solution of Eq. (10) in dimensionless form is expressed as follows: 

)3/1(* 2*** xxxeh +−−=                                                                                        (15) 

in which 32LCK=  is a characteristic parameter of the manifold. 
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Equivalent flow rate 

An interesting issue in the manifold flow problem is the determination of the equivalent 

flow rate. It consists of finding a hypothetical constant discharge for which the same head-

loss is produced throughout the manifold by the real variable flow effectively carried out. 

This can be easily achieved by setting the following equality:    

( )LhHQ
Dg

Lf
JT −== 2

52

8


                                                                                     (16) 

Here JT is the total head-loss throughout the manifold and Q  the equivalent flow rate. 

Replacing Eq. (13) into Eq. (16) and rearranging, one obtains: 








 −−= 3/1
32 LCKe

CL

H
Q                                                                                           (17) 

Eq. (17) allows the reduction of the manifold flow problem to an analogous constant pipe 

flow problem. Note that this analogy does not consider the actual shape of the pressure 

head profile but gives only a tool for rapid hydraulic analysis.   

Case of porous orifices 

For creeping flow resulting from high liquid viscosity or very small flow rates through 

orifices, it is possible to deduce an exact solution to the problem. The approximation of 

the porous orifice for the relationship between discharge q and driving head h on the one 

hand and the assumption of laminar flow in the manifold pipe on the other hold in this 

case. This results in linear relationships for the variables q and h, and Eqs. (2) and (6) 

respectively as follows: 

dxQCdJ x


=                                                                                                                 (18) 

=
L

x

x dxhKQ


                                                                                                              (19) 

where 4128 DgC =


is the elementary hydraulic resistance of the manifold under 

laminar flow conditions (Rouse, 1938), and K


 is the hydraulic conductivity of the porous 

orifice element.  

Note that the assumption of linear relationships between the variables q and h is valid for 

only small heads (Borutzky et al., 2002). Thus, the governing differential Eq. (10) 

becomes:  
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0=+ 
L

x

dxhKC
dx

dh 
                                                                                                      (20) 

This is a simple linear differential equation for which the particular solution for h(0) = H 

is expressed as follows: 

( ) )2/( xLxKCHexh −−=



                                                                                           (21) 

In dimensionless form, Eq. (21) reduces to: 

)2/1(* ** xxeh −−=                                                                                                   (22) 

where 
2LKC


=  represents a characteristic of the manifold. 

When comparing Eqs. (11) and (21), it appears clear that the main difference in the exact 

solution of the manifold flow problem under turbulent or laminar conditions lies in the 

argument of the decay term. Whereas in the former regime, the x-coordinate is involved 

in a cubic order, in the case of porous orifices, a quadratic order is involved.   

APPLICATION AND VERIFICATION 

To verify the accuracy of the present analytical solution (Eq. 15 for turbulent flow), a 

comparison was performed with an example taken from Yıldırım (2007). The results of 

the analytical model are compared with those obtained from the accurate SBS (step-by-

step) numerical method, which was developed by Hathoot et al. (1993). 

The problem consists of determining the pressure head h(x), discharge Qx(x) profiles, and 

head loss distribution along the pipe and the corresponding flow characteristics for a 

horizontal polyethylene trickle irrigation lateral with turbulent flow emitters. The total 

number of emitters is 151, equally spaced at 1.0 m. The required average emitter 

discharge is smq 3710555.5 −=  which requires a total flow rate for the manifold

smQT

3510389.8 −= . The pressure head at the entrance of the manifold is mH 70.8= .  

It is worth noting that in the present application, the results taken from Yıldırım’s study 

(2007) concern a turbulent flow emitter coefficient not equal to 0.5 (Eq.1) as for the 

proposed analytical model but rather equal to 0.54. It is obvious that no analytical solution 

is expected for such a value, but the comparison aims to analyze the proposed model and 

show its accuracy even in such cases.  

Figs. 2a, 2b, and 2c show the variation in the relative pressure head h*(x*), residual 

discharge Qx(x*), and relative pressure drop J/JT(x*) as functions of the relative distance 

length of the manifold. The present analytical solution expressed by Eq. (15) is compared 

with both the SBS numerical solution and Yıldırım’s analytical model. Fig. 2a shows that 

the predicted pressure head profile agrees well with the other models. The proposed 
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model shows a pronounced curvature profile, however. The residual pressure head at the 

dead end of the pipe (given by Eq. 13) is more compatible with the SBS model, where a 

relative deviation of only 0.6 % is noticed and 1.6 % compared to Yıldırım’s model. 

Concerning the variation in the flow rate along the manifold (Fig. 2b), a high agreement 

is observed between the present solution model and the other reference models. The 

variation in the residual flow rate shows a linear trend from smQT

3510389.8 −=  to zero 

at the dead end. In this case, the present solution matches the SBS model with high 

accuracy.   

On the other hand, the relative pressure drop J/JT along the manifold pipe (Fig. 2c) 

exhibits a nonlinear growth from the inlet to the dead end. The function describing its 

variation is simply the complementary values of the pressure head h(x) (Eq. 11) to the 

total head H. It follows from the figure that a similar trend between the proposed solution 

and reference models can be seen. As reported above, for the variation of the relative 

pressure head, a slight overestimation of the head losses along the manifold is noticed. 

These differences can be attributed to simplifying hypotheses such as the constancy of 

the friction factor and other assumptions and to the exponent of the turbulent flow 

emitters, which is different from the theoretical value of 0.5 applied for orifices. 

Therefore, the average emitter discharge computed in the present model is q  = 8.306x10-

7m3/s instead of the actual value of 5.555x10-7m3/s. 

Even though the proposed analytical solution has very slight variations when compared 

to other more precise models, the agreement is very satisfactory.  

 
Figure 2a: Relative pressure head for horizontal trickle lateral with respect to the 

distance ratio from the inlet. Comparison of the present model with 

numerical SBS and Yıldırım models 
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Figure 2b: Flow rate profile for horizontal trickle lateral with respect to the distance 

ratio from the inlet. Comparison of the present model with numerical SBS 

and Yıldırım models 

 

Figure 2c: Relative friction drop for horizontal trickle lateral with respect to the 

distance ratio from the inlet. Comparison of the present model with numerical SBS 

and Yıldırım models 
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To illustrate the effect of the characteristic parameters β and  of the manifold pipe on 

the pressure head variation, several values were analyzed and the results are depicted in 

Figs. 3a and 3b.  

  
Figure 3a: Influence of manifold characteristic parameter on the relative pressure 

head along the manifold for turbulent flow 

 
Figure 3b: Influence of the manifold characteristic parameter on the relative 

pressure head along the manifold for laminar flow 
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It follows from this parametric analysis for both flow regime hypotheses that 

characteristic parameters of the manifold, which are encompassed in β and, drastically 

control the decay rate of the pressure head profile along the pipe. One may deduce from 

Eqs. (15) and (22) governed by the exponential function, the decay follows the same 

pattern for both flow regimes, but at different rates. For high values of the β and   

parameters, the irregularity of the flow distribution through lateral ports is more 

pronounced. Far from the entrance, the pressure head vanishes significantly, which is not 

the case for low values of β and. This result, even though simple, gives more quantitative 

insight into the hydraulic behavior in terms of pressure variation and flow rate distribution 

throughout a dividing manifold. 

CONCLUSION 

In the present paper, a simplified analytical solution for a dividing manifold flow problem 

is presented. The solution aimed to provide an easy way to solve practical problems 

related to pipes with lateral ports, which are encountered principally in irrigation 

engineering and water distribution networks. The main issue is the determination of both 

the pressure head and flow rate variation throughout the manifold. 

Under some simplifying hypotheses, such as a horizontal manifold pipe and constancy of 

friction factor, it was then possible to derive a differential equation for the space variation 

of pressure head over the uniformly perforated pipe length from the Bernoulli equation 

after neglecting the kinetic energy term.  

The above simplifications are satisfied in most practical problems. Both the turbulent 

flow regime in the pipe and through the ports and the laminar regime case are treated. 

From that, simple and direct exact solutions are obtained as an exponential decay 

relationship of the characteristic manifold parameters and polynomial function of space 

coordinates along the pipe. 

For verification and validation, a comparison with available data from the literature was 

performed for the case of horizontal polyethylene trickle irrigation lateral with turbulent 

emitters. The comparison models chosen for verification are the numerical Step-by-Step 

algorithm (SBS Model) and the analytical solution of Yıldırım (2007). The results showed 

excellent agreement for both pressure head variation and residual flow distribution over 

the pipe length, even for a slightly different emitter exponent from that adopted in the 

present model solution. However, a certain deviation is noticed concerning the 

distribution of lateral port flow principally due to the exponent of the emitters, among 

other simplifying hypotheses of the model. 

It is worth recalling that other possible practical cases could be treated by generalizing 

the present analytical solution, but a more complex mathematical analysis treatment 

would be involved, which is not very useful for practical purposes, especially in the 

preliminary design step where a rapid, simple, and good approximation is needed.   
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