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ABSTRACT 

Manning’s roughness coefficient (n) has been widely used to estimate flood discharges 

and flow depths in natural channels. Therefore, although extensive guidelines are 

available, the selection of the appropriate n value is of great importance to hydraulic 

engineers and hydrologists. Generally, the largest source of error in post-flood estimates 

is caused by the estimation of n values, particularly when there has been minimal field 

verification of flow resistance. This emphasizes the need to improve methods for 

evaluating the roughness coefficients. Trinidad and Tobago currently does not have any 

set method or standardised procedure that they use to determine the n value. Therefore, 

the objective of this study was to develop a soft computing model in the calculation of 

the roughness coefficient values using low flow discharge measurements for a stream. 

This study presents Gene-Expression Programming (GEP), as an improved approach to 

compute Manning’s Roughness Coefficient. The GEP model was found to be accurate, 

producing a coefficient of determination (R2) of 0.94 and Root Mean Square Error 

(RSME) of 0.0024.  

Keywords: Gene-Expression Programming; Manning’s Roughness Coefficient; Open-

Channel Flow  
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INTRODUCTION 

History has shown that Trinidad and Tobago is virtually free from the majority of natural 

disasters such as volcanoes, hurricanes and pestilence. The most common natural disaster 

encountered in Trinidad is flooding.  

The Caroni River Basin upstream of the water treatment plant is the only major surface 

water source being studied extensively in Trinidad. The Water Resources Agency (2001) 

has generally found that the characteristics of the Caroni basin are applicable to the rest 

of Trinidad. Characteristics of rivers and streams flowing through urbanised areas are 

heavily polluted. Industries such as agriculture and manufacturing discharge their 

untreated waste directly into streams (Narinesingh 2014). Untreated sewage is also a 

major contributor of organic pollution which causes low dissolved oxygen levels and high 

bacteria counts in rivers.  

These issues of pollution directly impact flow characteristic and channel geometry, and 

if not monitored properly, the natural parameters of the rivers could regularly change 

significantly. Fortunately, the Water and Sewerage Authority (WASA) has various 

programs including the “Adopt A River Initiative” which is geared at involving the 

community and corporate citizens in the improvement of watersheds in Trinidad and 

Tobago. However, more can be done to address the issues of pollution and the effects of 

climate change on the water resources for countries. 

Understanding various parameters in open channel flow is important because they play a 

pivotal role in many unique water managements in Trinidad. These techniques include 

measuring discharge in irrigation channels, streams, storm water systems and wastewater 

processing for monitoring effluent discharge (Dwyer 2018).  

It should be noted that the most recent major flood event reported in the country took 

place in October 2018 affecting an estimate of 150,000 people in 4,100 households, 

approximately 11 percent of the population (Forest 2018). The event was so destructive 

that it was officially classified as a national disaster and resulted in an estimated US $3.7 

Million dollars in damages (Fontes de Meira and Phillips 2019). Additionally, 

approximately 75 percent of local farmers in the country had been severely affected 

through the loss of crops and livestock. It is on the heels of these devastating impacts that 

one begins to understand that accurate information about the characteristics of rivers is 

important for flood forecasting.  

Moreover, discharge measurement in rivers is a challenging job for hydraulic engineers. 

The stage and the discharge of a river vary depending on the magnitude of rainfall 

intensity that the river basin or watershed receives. Additionally, Azamathulla et al. 

(2011) states that discharge at a section in a river is not a function of stage alone. The 

study further indicates that the discharge of a river is dependent on several factors such 

as channel geometry, bed roughness and longitudinal roughness, but quantification of all 

these factors is impractical.  
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Even though the data, guidelines, and equations are readily available in terms of 

estimating roughness coefficients, for the entire range of flow depth, only one n value is 

selected. Wohl (2000); Costa and Jarrett (2008), and Jiang and Li (2010) agreed that there 

is no exact method for determining n in natural rivers. Therefore, extensive field data is 

required to reduce the uncertainties in the estimation of n values (H. Md. Azamathulla 

2012). 

This paper aims to determine if the GEP model can be applied to accurately derive the 

Manning’s Roughness Coefficient for selected Trinidadian rivers. Several statistical 

parameters would be used to gauge the applicability of the GEP model to estimate the 

Manning Roughness Coefficient. 

LITERATURE REVIEW 

 Gene-Expression Programming (GEP) 

Software-oriented computing techniques can be an efficient method for exploring 

difficult problems in water resources engineering and may help to acquire better empirical 

insights into complex multi parameter problems, in which it can reduce the range of 

plausible solutions or the possible solution field (C. Prakash Khedun 2013). Several open-

source and commercial software are available that can be used for modelling predictive 

roughness coefficient values. This study uses the Gene-Expression Programming model, 

found in the GeneXpro program.  

Gene-Expression Programming (GEP) is an extension and combination of the more 

widely used Genetic Programming and Genetic Algorithms. GEP through multiple 

regression analysis is capable of examining the relationship between a single dependent 

variable and a set of independent variables, in addition to modelling these relationships 

(Maliki et al. 2011). GEP creates populations modules which introduces genetic variation 

and reproduces them according to fitness. When this process is repeated several times, 

eventually a generation achieves an output of better solutions to problems, therefore GEP 

is referred to as a learning or evolutionary algorithm. 

Recent works in GP and GEP were conducted by Azamathulla et al. (2011) on the 

prediction of longitudinal dispersion coefficients in streams using GP,  Azamathulla et al. 

(2010) on bridge pier scour and Ghani and Azamathulla (2014) on sediment transport, 

which they confirmed the suitability of applying GP and GEP for water resource 

engineering studies. More importantly, Azamathulla et al. (2011) developed 

mathematical models for the developed Manning’s roughness coefficient based on the 

GEP techniques for the Colorado high gradient streams. 
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Gene-Expression Programming to Estimate Manning’s Roughness Coefficient 

In many reported experiments in literature, GEP did not perform better than existing 

methods such as the Support Vector Machine (SVM), Artificial Neural Networks (ANN), 

M5 Model Trees. One major reason as highlighted by (Mihai Oltean 2002) was that the 

success rate of GEP increases with the number of genes in the chromosome. However, 

after a certain value, the success rate decreases if the number of genes in the chromosome 

is increased. This happens due to forcing a complex chromosome to encode a less 

complex expression. 

It is expected that rivers with larger depths and all around larger cross-sectional areas will 

have a lower n in comparison to shallow and or smaller channels. Factors such as 

sedimentation, blockage, weather and changes to rivers geometric shape might’ve 

occurred since the data was collected. 

From the various studies and reports, it appears to be a lack of interest in Trinidad to use 

soft computing over the various empirical methods available. This may be because 

obtaining various flow measuring equipment and calculating n from the data gathered, is 

simpler than taking the additional time learn to computing the field data in a complex 

GEP program. Azamathulla et al. (2010) noted in his study on the use of GEP to predict 

bridge pier scour, that results were significantly better than results from conventional 

statistical methods. However, even though the n is expected to be more accurate using 

GEP, perhaps the difference in accuracy in this case is not significant enough to justify 

using GEP over the empirical methods. 

The Photographic Method of Roughness Coefficient Evaluation 

This method uses generated photos to show all the necessary kinematics and 

characteristics of the channel. From the photos taken parameters such as position at which 

flood line in the bed can be noticed, the peak flow in the canal which was measured by 

the specific hydrometric wing and the marks of high-water levels which can be used for 

determining the surface profile at peak flows (Elvis Žic 2009). For this method the n is 

estimated based on measured flows, shapes of water surfaces and characteristics which 

are observed on more than two transversal sections within the bed. This method has ± 

15% accuracy under different flow conditions. 

Ven Te Chow Method for Roughness Coefficient Determination 

The determination of n in this method has been performed by using a table with 

predetermine n values (Chow 1959) developed a standardize reference table that quotes 

the minimal, normal and maximum rates of the n for every single type of open canal. 

(Chow 1959) presented that the roughness coefficient varies in the cross section due to 

the variation in water levels, that is, the lower the water depth the higher the coefficient 

value, since the effects of the irregularities of the canal bottom are more evident.  
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In recent years, climate change has become a major factor in weather patterns, data and 

trends previously observed will need revisiting. In the case of Trinidad, it is predicted that 

climate change will affect the island by casing an increase in extreme rainfall and more 

extended drought periods (The Water Resources Agency 2001). Streambank vegetation 

creates turbulence, reduces the capacity of channels and retards flow. It is likely that 

streambank vegetation may be less abundant in cases of longer droughts, predicted by 

climatologist. However, in cases where vegetation is prevalent adjustments values are 

required as a correction to the n value. Of the flow-resisting factors analysed by Cowan 

(1956), channel vegetation has the largest adjustment values and thus probably the 

greatest potential effect on the total n selected for a reach (Coon 1998). Corrections for 

vegetation are primarily applicable to channels where vegetation is uniformly distributed 

across a channel section and for channels less than 100 ft wide. (Coon 1998) also found 

that narrower channels generally require larger adjustments for vegetation, and wide 

channels with no substantial channel-bottom vegetation would require little to no 

adjustments. 

Empirical Methods and Formulas for Roughness Coefficient Determination 

The Manning’s formula is the standard equation for determination of natural stream 

flows, where Q is the discharge (in m3/s), n is Manning’s roughness coefficient, A is the 

area of the wetted channel cross-section (in m2), R = A/P is the hydraulic radius of the 

channel cross-section (in meters) and S is the friction slope (Ladson et al, 2003). 

2/13/21
SAR

n
Q =            (1) 

The variable for n has numerous empiric equations that exist in scientific and engineering 

literature. However, these equations are situational to certain applicable conditions (refer 

to Table 1 in the appendix). In this report a comparison of accuracy between these various 

n equations will be drawn, with the ultimate intention of comparing them with the soft 

computed model (GEP) on a graph labelled the predicted n vs observed n. 

METHODOLOGY 

Data Description 

The data set used in this study was obtained from the Water and Sewerage Authority - 

Water Resource Agency (WASA-WRA), Trinidad and from personal field readings. The 

discharges were derived from measurements of the cross-sectional area of the stream and 

the mean velocity within each section was found and summed together to derive the mean 

velocity at that cross section of the river (WMO 1980). The WRA had recorded several 

readings over a span of 10 years, from 2010 to 2019, at several sections along the stream. 

Data from 20 sections for the stream were used. The readings chosen were separated as 
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70% data for calibration and next 30% data for validation/ testing purpose for all the 

models.  

Development of the GEP Model 

In this model, a training process is carried out using experimental data to train the GEP 

algorithm. In the training, the measured flow parameters are introduced to GEP as input 

parameters, while the n is introduced as a target parameter. 

On account of the available data, a population size of 20 chromosomes was selected. After 

obtaining the population size, the next step would be to choose the fitness function. For 

this problem, the fitness, fi, of the program, i, is measured by the equation below: 

i
i

E
f

+
=

1

1
1000           (2) 

Where: jiji OPE −=   

Where Pij is the value predicted by the individual chromosome i for fitness case j and Oj 

is the observed value for fitness case j. For Pij = Oij means that Eij = 0 representing a 

perfect solution with no error. The advantage of this kind of fitness functions is that the 

system can find the optimal solution by itself and the run will continue until the maximum 

fitness is achieved (Ferreira, 2001). 

Then the terminals and functions were chosen. The four basic arithmetic operators (+, -, 

x, /) and square root (√) and power (^) operators were used as functions while the 

terminals selected was Discharge (Q), slope (S), Cross-sectional Area (A) and Wetted 

Perimeter (P). Although many more mathematical operators could have been used, the 

goal was to achieve a relatively simple expression to represent the n.  

The next step involved determining the number of genes, head and tail length for each 

gene in a chromosome. In this study, a single gene and two head lengths are initially used. 

Then, the number of genes and heads were increased one at a time during each run while 

monitoring the training and testing performances of each model. It was observed that 

more than two genes and a head length greater than eight did not significantly improve 

the training and testing performance of the GEP models. Thus, the head length, h = 7, and 

three genes per chromosome are considered for each GEP model. Since the maximum 

number of arguments per function is equal to two, giving nmax = 2, the tail length would 

be calculated by the following relation: 

( ) 11 +−= nht            (3) 

( ) 1127 +−=t           (4) 

Giving tail length, t = 8 
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It should also be noted that all genetic operators such as mutation, inversion, transposition 

(insertion sequence (IS), root insertion sequence (RIS) and gene transposition), 

recombination or crossover (1-point, 2-point and gene recombination), and specific 

genetic operators were used. Two one-point mutations with mutation rate of 0.044 were 

used. Lastly, the linking function used to join the sub-expression tress was the addition 

operator (+). 

The GeneXpro Tools software containing the Gene-Expression Programming model was 

run for a number of generations and was stopped when there was no improvement in the 

fitness function value and coefficient of determination (Refer to Figure 1). 

 

 

Figure 1: Summary of the Gene-Expression Programming algorithm  
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Table 1: Summarised GEP model parameters for Manning’s Roughness Coefficient 

Parameters Values 

Population size 20 

Set of function +, -, *, /, √,  ^ 

Set of terminals Q,A,P,S 

Random numerical constant (RNC) 05 

RNC type Floating point 

Range of RNC [-10, 10] 

Length of head 08 

Number of genes 03 

Linking function + 

Fitness function RMSE 

Rate of mutation 0.044 

Rate of inversion 0.1 

Rate of IS transposition 0.1 

Rate of RIS transposition 0.1 

Rate of Gene transposition 0.1 

Rate of One-point recombination 0.1 

Rate of Two-point recombination 0.3 

Rate of Gene recombination 0.3 

Rate of Dc-specific mutation 0.044 

Rate of Dc-specific inversion 0.1 

Rate of Dc-specific IS transposition 0.1 

Rate of Random constant mutation 0.01 

Data Analysis 

The observed Manning Roughness Coefficient (nobs) was determined by transposing the 

equation 1 to make nobs the subject of the formula resulting in Equation 4. The remaining 

parameters were filled with the data received from the WRA at each cross section.  

The performance of GEP in training and testing sets was validated in terms of the common 

statistical measures coefficient of determination (R2) and root mean square error (RMSE) 

(Refer to equations below). A graph of observed n (nobs) versus predicted n (nmodel) was 

also used to visually illustrate the difference between the GEP model and the conventional 

n.  
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Pearson's Correlation Coefficient (R)  
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Where: 

 Q – Discharge  

h – Stage 

n – Number of data points 

Root Mean Square Error (RMSE) 

( )

=

−
=

n

k

kelkobs

n

QQ
RMSE

1

2
mod

           (6) 

 Where: 

Qobs, k – Actual (Observed) Discharge 

Qmodel, k – Predicted Discharge from model 

n – Number of data points 

RESULTS AND DISCUSSION 

The parameters that mainly contribute to the determination of n for both GEP and 

regression models in this study were the wetted perimeter (P), area (A), bed slope (S), 

discharge (Q) and relative smoothness (d84,50). However due to the relative smoothness 

data being unavailable, this research was unable to use relative roughness as a parameter 

in the GEP, the regression models and the various equation used to calculate roughness 

coefficient.  

Unavailable field data meant that the required parameters for the various empirical 

equations were unable to be obtained, making the Manning’s formula the only empirical 

equation in the study being used to produce observed values of n. The remaining 

parameters (A, P, S, Q) were used as the independent variables to generate an accurate 

model for the n. Jarrett (1984) generated an equation to estimate n using hydraulic radius 
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and relative smoothness for his data. The results substantially underestimated n values as 

the slope steepness increased. Previous studies demonstrated that flow resistance has a 

great affiliation with hydraulic radius and slope in high gradient streams (Jarret 2012). 

High gradient streams are classified as streams with Slopes (S>0.002m/m), which 

majority of the streams are. Most of the higher gradient channel are located in the north 

and east of Trinidad due to the topography of the northern range.  

Roughness Coefficient Prediction Formulae 

The Gene Expression model consisted of one dependent variable (n) and four independent 

variables (S, P, Q, A) ensuring n is modelled in terms of these variables. Based on the 

results of the GEP model the expression tree in Figure 2 was produced. This was 

simplified to generate the equation below, which was used to determine the n for the 

stream: 

( )  QA

AP

P

QP

S
A

AP

Q

APS

n

P

el
/228.5008.8874.2

808.5

108.3

/

2

2/1

mod
−−

++
+−−

−
−+



















−
=             (7) 

 

Figure 2: Gene-Expression Trees used to formulate the Roughness Coefficient (n) 

formula 
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Comparative Analysis  

Training and testing sets were evaluated in terms of the Coefficient of Determination (R2) 

and Root Mean Square Error (RMSE). R2 assessed how strong the linear relationship is 

between two variables were and the RMSE measured the error of a model in predicting 

quantitative data. The training and testing data results were similar which proved the 

validity of the output of the model. An R2 higher than 0.6 is seen as worthwhile prediction 

model, R2 for the GEP model was 0.94, suggesting that 94% of the variance in n can be 

predicted by the independent variables Q, P, A and S. These results prove that the 

proposed model can accurately predict the n without the relative smoothness. 

Although the range of values were small, the GEP model produced very low errors with 

respect to the RSME evaluation. The lower the value of RMSE indicates a better fit which 

means the observed data points are much closer to the model’s predicted values. The 

GEP’s RSME was 0.0024. 

Furthermore, a graph of observed roughness coefficient (nobs) versus predicted roughness 

coefficient (nmodel) was plotted (Figure 3). This graph gives a visual representation of the 

coefficient of determination (R2) of 0.94, which represent an excellent relationship 

between the observed roughness coefficient and the modelled roughness coefficient.  

Overall, the results of the prediction of the GEP model illustrated a very high correlation 

with minute errors, making it a model capable of predicting the n for streams with low 

flows. 

 

Figure 3: Graph of Observed Roughness Coefficient versus Modelled Roughness 
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CONCLUSION 

A successful investigation of predicting the n for low flows has been achieved. The 

studies which showed various methods of obtaining a roughness coefficient value had 

one factor in common, that is, all the models relied on field data to reduce the uncertainties 

in the estimation of n values. The GEP model had high correlations (R2 = 0.94) and small 

errors (RMSE = 0.0024). This justifies that the GEP model can be used to accurately 

predict the n for low flow streams in Trinidad and Tobago. The overall paper provided 

insight on what methods exist in Trinidad in terms of the collection and calculation of 

data for roughness coefficients. 
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APPENDIX 

Table 1: Comparison of the empirical equations for determining Manning’s 

Roughness Coefficient (Adapted and Modified from Fischenich , 1997) 

Researcher 
Yea

r 
Equation Applicable Conditions 

Strickler 1923 n=0.047 .  𝑑
1

6 

Low gradient stream; sediment of 

gravel size or smaller; bed 

material is the primary source of 

resistance; high within-bank flow 

Henderson 1966 n=0.034  .  𝑑
1

6 

Low gradient stream; sediment of 

gravel size or smaller; bed 

material is the primary source of 

resistance 

Raudkivi 1976 n=0.042 .  𝑑
1

6 - 

Raudkivi 1976 n=0.013 .  𝑑65

1

6 - 

Garde and 

Raju 
1978 n=0.039 .  𝑑50

1

6 - 

Subramanya 1982 n=0.047 .  𝑑50

1

6 - 

Petryk and 

Bosmajian 
1975 n=𝑛0√1 + (

𝑐 ∑ 𝐴𝑖

2gAL
) (

1

𝑛0
)

2
𝑅

4

3 
For a densely vegetated 

floodplain. 

Limerinos 1970 n = 
0.8204 . 𝑅

1
6

11.6 + 2.log(
𝑅

𝑑84
)
 

Coarse bed material, straight 

channel alignment with little 

increase in width in the 

downstream direction; minimal 

vegetation on the banks and in the 

channel, relatively wide stream of 

simple trapezoidal shape 

Burkham and 

Dawdy 
1976 n = 𝐶 . 𝜀

1

6 - 

General Los 

Angeles 

method 

 
n = 

  
(𝐴1 𝑛1+ 𝐴2𝑛2+𝐴3𝑛3+...+ 𝐴𝑁 𝑛𝑁)

𝐴
 

- 

Colbatch 

method 
 

n = 

(𝐴1 𝑛1
1.5+ 𝐴2𝑛2

1.5+𝐴3𝑛3
1.5+...+ 𝐴𝑁 𝑛𝑁

1.5)
2
3

𝐴
2
3

 
- 

Pavlovski, 

Muhlhofer, 

Einstein and 

Banks 

 n=
(𝑂1 𝑛1

2+ 𝑂2𝑛2
2+𝑂3𝑛3

2+...+ 𝐴𝑁 𝑛𝑁
2 )

1
2

𝑂
1
2

 - 

 


