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ABSTRACT 

This study constitutes the second part of a first study devoted to the critical flow in a 

smooth circular conduit. The first study published on this subject showed that two 

critical states occur in a circular conduit for a given diameter D and slope S0. The first 

one is observed at shallow depths while the second one settles down at greater depths. 

The study considered the example of the smooth circular conduit of diameter D = 1m 

and concluded that when the slope S0 is such that S0 > 0.00183813, two critical states 

occur for two different discharges. Slopes that are less than this value do not generate 

any critical state of the flow. It was found that the slope S0 = 0.00183813 corresponds to 

the smallest slope that causes a single critical state of the flow. The present study is 

interested in the influence of the diameter D on the variation of the critical depth as well 

as on the fate of the two critical states of the flow. The partially filled smooth circular 

conduit is still considered herein. This shows that there is a diameter D1, the smallest, 

which generates only one critical state of the flow for a given slope of the conduit. All 

the conduit diameters D greater than D1 generate two critical flow states, while 

diameters smaller than D1 are the location of no critical flow. In addition, it has been 

demonstrated that the more the diameter of the conduit increases, the more the first 
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critical state occurs at shallower depths. Conversely, the second critical state of the flow 

is observed at greater depths. 

Using the appropriate theoretical relationship, it was possible to calculate the pair of 

values (D1 ; S0) which generates a single critical state of the flow. These values have 

been plotted graphically, which allowing to know whether the conduit is the seat of one 

or two critical states, or even of no critical state, from the known pair of values (D ; S0). 

Keywords: Circular conduit, critical depth, normal depth, slope, discharge, diameter.  

RESUME 

Cette étude constitue la deuxième partie d'une première étude consacrée à l'écoulement 

critique dans une conduite circulaire. La première étude publiée sur ce sujet a montré 

que deux états critiques se produisent dans une conduite circulaire de diamètre D et de 

pente S0 donnés. Le premier s'observe à faible profondeur tandis que le second s'installe 

à plus grande profondeur. L'étude a pris l'exemple de la conduite circulaire lisse de 

diamètre D = 1m et a conclu que lorsque la pente est telle que S0 > 0.00183813 , deux 

états critiques se produisent pour deux débits différents. Les pentes inférieures à cette 

valeur ne génèrent aucun état critique de l’écoulement. Il a été constaté que la pente 

S0= 0.00183813 correspond à la plus petite pente qui provoque un seul état critique de 

l'écoulement. La présente étude s'intéresse à l'influence du diamètre D sur la variation 

de la profondeur critique ainsi que sur le devenir des deux états critiques de 

l'écoulement. La conduite circulaire lisse partiellement remplie est toujours considérée 

dans cette étude. Celle-ci montre qu'il existe un diamètre D1, le plus petit, qui ne génère 

qu'un seul état critique de l'écoulement pour une pente donnée de la conduite. Tous les 

diamètres D de la conduite supérieurs à D1 génèrent deux états d'écoulement critiques, 

tandis que les diamètres inférieurs à D1 sont le lieu géométrique d’aucun écoulement 

critique. De plus, il a été démontré que plus le diamètre de la conduite augmente, plus le 

premier état critique se produit à des profondeurs moindres. A l'inverse, le deuxième 

état critique de l'écoulement est observé à des profondeurs plus importantes. En utilisant 

la relation théorique appropriée, il a été possible de calculer le couple de valeurs (D1 ; 

S0) qui génère un seul état critique de l’écoulement. Ces valeurs ont été reportées 

graphiquement, ce qui permet de savoir si la conduite est le siège de un ou de deux états 

critiques, voire même d’aucun état critique, à partir du couple de valeurs connu (D ; 

0S ).  

Mots clés : Conduite circulaire, profondeur critique, profondeur normale, pente, débit, 

diamètre. 
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INTRODUCTION 

The critical depth denoted cy is the depth at which the specific energy is minimum for a 

given discharge or the depth at which the discharge is maximum for a given specific 

energy (Chow, 1959). The corresponding flow is called critical flow that be occurred in 

a channel by raising the channel bottom, and/or by decreasing the channel width. 

Another parameter of great importance in free surface flow is the celerity c of a small 

wave generated by a disturbance or an obstruction, especially to define critical flow 

(French, 1985; Subramanya, 2009). The celerity c is defined as the velocity of the wave 

relative to the velocity V of the mass medium in which the wave is travelling. When the 

celerity c is equal to the flow velocity V, the flow is thus critical. The flow is said 

subcritical when V < c and it is said supercritical when V > c. The critical flow is 

characterized by a Froude Number F equal to unity. The Froude number F is less than 

unity when the flow is subcritical or tranquil, meaning that the wave celerity exceeds 

the flow velocity. Waves can flow upstream and water can pond behind an obstruction. 

The Froude number is greater than unity when the flow is supercritical, meaning that the 

wave velocity is lower than the flow velocity. Waves cannot be generated upstream. 

Any disturbance occurring downstream of the flow has no effect on the upstream flow. 

The nature of the flow can also be known after comparing the critical and normal 

depths. If the actual depth is greater than critical depth, then the flow is considered as 

subcritical. The flow is said to be supercritical when the actual depth is less than the 

critical depth. The critical depth is also used in the classification of water surface 

profiles, along with the slope of the channel S0 and the normal depth yn (Chow, 1959). 

When the flow is critical, the discharge and the flow depth have a unique relationship 

(Chaudhry, 2008), according to the criticality criterion. Using this property, several 

flow-measuring devices have been developed. These are called critical-flow meters 

(Henderson, 1966: Chaudhry, 2008). As a general rule, the equation which governs the 

critical flow in channels and conduits partially filled is implicit with respect to the 

critical depth which is the unknown parameter of the problem. The equation can be 

solved by a trial-and-error procedure or by using numerical methods. Several numerical 

methods are available for solving this equation (McCracken and Dorn, 1964), such as 

bisection method, Newton method also called the Newton-Raphson method, secant 

method, and the method of successive approximations. The critical depth may also be 

determined by the use of the design curves (Chow, 1959). 

Regardless of the shape of the prismatic channel profile such as rectangular, trapezoidal, 

or circular, there is only one discharge that generates a unique critical state of the flow 

(Chow, 1959). On the other hand, there may be more than one critical depth for a 

specified discharge in a compound channel (Chaudhry and Bhallamudi, 1988). In their 

recent study, Achour and Amara (2020) showed the existence of two critical states in 

the partially filled circular conduit, corresponding to two different flow rates. One of the 
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two critical states is observed at shallow depths, while the second occurs at greater 

depths.  

The critical depth, even if it is a particular depth, is a uniform depth that should depend 

on the characteristics of the flow such as the slope S0 of the channel, the absolute 

roughness  characterizing the state of the inner wall of the channel or the conduit, and 

the kinematic viscosity  of the flowing liquid. For the partially filled circular conduit, 

Achour and Amara (2020) were able to establish the implicit relationship 
*

0
0( , , / , )

c f
DS R  = , where /c cy D =  is the relative critical depth, / D  is the 

relative roughness, and *
fR  is the shear Reynolds number at the full states of the conduit 

denoted “f”. It has been shown that *
fR  depends on the diameter D of the conduit, the 

slope S0 of the conduit, the kinematic viscosity   of the flowing liquid, and the 

acceleration due to gravity g. Thanks to this relation, a graph was drawn showing the 

variation of the critical depth as a function of the slope of the conduit. This graph 

corresponds to a partially filled smooth circular conduit of diameter D = 1m. This graph 

shows five zones in which the flow occurs and how it evolves. The first zone is that of 

the subcritical flow. This evolves towards the second zone which corresponds to the 

zone of the supercritical flow. This passage takes place via a first critical state of the 

flow. The flow then passes into the third zone corresponding to a subcritical flow. This 

passage takes place through the appearance of a second critical state of the flow. A 

fourth zone can be observed on the graph and corresponds to a subcritical flow zone 

generated by weak slopes S0 less than 0.00183813. In this zone, the real critical state of 

the flow does not exist and the critical depths are only fictitious. All slopes S0 greater 

than 0.00183813 generate two critical states of the flow, while the slope S0 = 

0.00183813 generates only one critical state. The fifth and last zone of the graph 

corresponds to a zone where the slopes are weak, i.e. less than 0.00183813, and where 

the flow is supercritical. Therefore, uniform flow is unlikely in this area which can be 

the site of a hydraulic jump or a backwater curve. 

In the present study, the influence of the conduit diameter on the variation of the critical 

depth as well as on the fate of the two critical states of the flow is highlighted. By 

choosing a given slope S0, the variation of the critical relative depth as a function of the 

normal relative depth is graphically represented for various values of the diameter D. 

Interesting conclusions are drawn concerning the evolution of the two critical states of 

the flow as a function of the variation of the diameter. In particular, it was possible to 

determine the pair of parameters D1 and S0 which generates a single critical state of the 

flow in the smooth circular conduit. All the conclusions drawn as well as all the plotted 

graphs are valid for a kinematic viscosity  = 10-6 m²/s of the flowing liquid. 
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AVAILABLE FUNDAMENTAL RELATIONSHIPS 

In their recent study, Achour and Amara (2020) established two fundamental 

relationships governing the critical flow in a partially filled circular pipe. These 

relationships are deduced from the general equations valid for any shape of channel or 

conduit. The first general relationship combines the characteristics of both critical and 

normal flows. It is expressed as follows: 

3/2 3/2

01/2 *

,

10.04
4 2 log

14.8

c n

n h nc

A A
S

P R RT

 
= − +  

 

          (1) 

Where cA is the critical water area, cT  is the critical top width at the water surface, 

nA is the normal water area, nP  is the normal wetted perimeter, 0S  is the slope of the 

channel, ,h nR  is the normal hydraulic radius, *R  is a dimensionless number which 

gives the measure of the ratio of the friction forces to the viscous forces. It is then 

closely related to the shear Reynolds number, and  is the absolute roughness. *R  is 

expressed as: 

3

, 0* 32 2
h ngR S

R


=          (2) 

Where g is the acceleration due to gravity, and   is the kinematic viscosity of the 

flowing liquid. 

The second relation expresses the critical flow in a channel or conduit of any shape. It is 

deduced from relation (1) in which the subscript "n" in the hand-right side of the 

equation is replaced by the subscript "c" which denotes the critical condition of the 

flow. After some simplifications, the final result is: 

0 *

,

10.04
4 2 log

14.8

c

h cc

P
S

R RT

 
= − +  

 

          (3) 

In this equation, *R is such that: 

3

, 0* 32 2
h cgR S

R


=           (4) 

Relation (3) represents the general relationship which governs the critical flow in a 

channel of any shape. All the parameters which influence the flow are taken into 

account. The critical parameters Pc, Tc, and Rh,c depend on the geometry of the channel 

as well as on the relative critical depth.  
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Applied to the case of the partially filled circular conduit of diameter D, relations (1) 

and (3) are written respectively as (Achour and Amara, 2020): 

   

 

 
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Where: 

1( ) cos (1 2 )c c  −= −           (7) 

( ) ( )

( )1

2 1 2 1
( )

cos 1 2

c c c

c

c
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 


−

− −
=

−
          (8) 

(1 )c c c  = −         (9) 

c  is the relative critical depth which represents the ratio of the critical depth cy  to the 

diameter D of the conduit, such that: 

c
c

y

D
 =         (10) 

The dimensionless number *
fR  is the shear Reynolds number at the full state of the 

conduit. It is expressed as: 

3

0* 4 2f

gD S
R


=         (11) 

INFLUENCE OF THE CONDUIT DIAMETER 

To observe the influence of the diameter D of the conduit on the variation of the relative 

critical depth as well as on the evolution of the two critical states of the flow, it is 

necessary to use Eq.(5). A value of the slope S0 is chosen as well as the kinematic 

viscosity  of the flowing liquid. The diameter D of the conduit is varied thereafter. 

Therefore, the dimensionless number *
fR  is known, according to Eq.(11). Figure 1, 
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resulting from this approach, illustrates the variation of the relative critical depth as a 

function of the relative normal depth for the chosen slope 0 0.002S =  and the kinematic 

viscosity 6 210 /m s −= , for various diameters D of the conduit and →0. 

Figure 1 shows that some curves do not intersect the first bisector, while others have 

two points of intersection. One is at shallow depths, while the other manifests itself at 

greater depths. This allows concluding that for the chosen slope S0 = 0.002, there are 

conduit diameters which are the seat of two critical states of the flow, while other 

diameters do not generate any critical state of the flow. Figure 2 clearly shows that the 

curve does not present any point of intersection with the first bisector, meaning that the 

pair of parameters S0 = 0.002, D = 0.5m does not generate any critical state of the flow. 

The diameter D = 0.5m will be the seat of a critical flow for a different slope 0S . 
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Figure 1: Variation of the relative critical depth c with the relative normal depth 

n  in a partially filled smooth circular conduit of various diameters D, for the 

slope 0 0.002S = , ,maxn = 0.939. Red curve: First bisector corresponding 

to n c =  
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Figure 2: Variation of the relative critical depth c with the relative normal depth 

n  in a partially filled smooth circular conduit of diameter D = 0.5m, for the slope 

0 0.002S = . Red curve: First bisector corresponding to n c =  
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Figure 3: Variation of the relative critical depth c with the relative normal depth 

n  in a partially filled smooth circular conduit of diameter D = 1m, for the 

slope 0 0.002S = . Red curve: First bisector corresponding to n c = , (•) Critical 

flow 

Figure 3 shows that for the pair of parameters S0 = 0.002 and D = 1m, there are two 

critical states of the flow. The first occurs at the filling rate 12.2% = , while the second 

occurs at the filling rate 47% = . 

It is to be concluded, according to figure 1, that for a partially filled smooth circular 

conduit with a given slope 0S , there is a diameter 1D , the smallest, for which there is 
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only one critical state of the flow. This corresponds to the curve tangent to the first 

bisector of figure 1. All diameters D greater than D1 will be the site of two critical flow 

states, while diameters smaller than D1 will not generate any critical flow. Using Eq.(6), 

it was possible to determine the pair of values (D1 ; S0).These are reported in table 1 and 

have been represented graphically in Fig.4. 

 

Table 1: Values of (D1 ; S0;1) and corresponding relative critical depth, according to 

Eq.(7).  

D1(m) S0 c  

0.25 0.002718528 0.301261184 

0.35 0.002457198 0.292927912 

0.50 0.002217658 0.284548538 

0.60 0.002107822 0.280429502 

0.80 0.001949519 0.274142118 

1.00 0.00183813 0.269449284 

1.20 0.001753889 0.265713456 

1.50 0.001658065 0.261278701 

1.80 0.001585149 0.257819483 

2.00 0.00154503 0.255749656 

2.50 0.001464827 0.2516108441 

2.75 0.001432439 0.249882737 

3.00 0.001403708 0.248374690 
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Figure 4: Variation of the smallest diameter D1 of a smooth circular conduit 

generating one critical state of the flow with respect to the slope S0. 
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The blue curve in Fig.4 delimits two zones. The first one is a zone where the pair of 

values (D; S0) generates two critical states of the flow. The second one is a zone where 

the pair of values (D; S0) generates no critical state of the flow. 

The blue curve in Fig.4 can be represented by a simple equation which results in a 

maximum relative error of 1.5%. This is expressed as: 

0.264
11

0
4.5 10

S
D

− 
 =
 
 

        (12) 

Diameter D must be expressed in meters. Eq.(12) is valid in the range 0.25 3m D m  .  

On the other hand, the larger the diameter, the more the first critical state occurs at 

shallower depths. At the opposite, the second critical flow occurs at greater depths. This 

case is illustrated in Fig. 5 for the smooth circular conduit of diameter D = 2m. The first 

critical state occurs at the 5% filling rate, while the second critical state occurs at the 

62.6% filling rate.  
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Figure 5: Variation of the relative critical depth c with the relative normal depth 

n  in a partially filled smooth circular conduit of diameter D = 2m, for the slope 

S0 = 0.002.  Red curve: First bisector corresponding to n = c, (•) Critical flow, 

n,max=0.939  

CONCLUSIONS 

The main objective of the study was to observe the influence of the diameter D of a 

smooth circular pipe on the behaviour of the critical states of the flow, the existence of 

which was demonstrated during the first part of the study. It has been shown that certain 

diameters, associated with conduit slopes S0, could generate two critical states of the 

flow or a single critical state, or even no critical state. From the general equation which 
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governs the critical flow in the circular conduit [Eq.(6)], the pairs of values (D; S0) 

which generate a single critical state of the flow have been calculated. This allowed 

plotting a graph [Fig.(4)] from which the user can predict whether or not the conduit 

would be the seat of a critical state of the flow, provided D and S0 are given. An 

approximate relationship has been proposed for the calculation of the slope S0 which 

generates a single critical state of the flow, when the diameter D of the conduit is given. 

This relation causes a maximum relative error of 1.5% and can be used to easily know 

the order of magnitude of S0. 

The study also showed that the more the diameter of the conduit increases, the more the 

first critical state of the flow occurs at low filling rates. In contrast, the second critical 

state moves away from the first and manifests itself at the greatest filling rates.  
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