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ABSTRACT 

The proper assessment of the friction factor f is of a great importance in the sound 

resolve of turbulent flow problems. The current rational formulation of f is that 

developed by Colebrook stating that f depends on the relative roughness / hD and the 

Reynolds number R, through an implicit equation. The new formulation developed 
herein presents f as a function not of the usual Reynolds number R but of a 

dimensionless parameter, denoted
*

R , representing the ratio of the friction forces to the 

viscous forces. Acting as a Reynolds number, it is shown that 
*

R is governed by an 

implicit equation of / hR and R. The calculation of the friction factor value using the 

new formulation gives a maximum deviation of 0.25% in comparison with the exact 

value of f derived from Colebrook equation. At the end of an additional calculation step, 

the deviation drops down to a maximum of 0.04% only. This calculation step is 
recommended for solving problems requiring high accuracy. All the formulas developed 

herein can be classified in the category of short equations, easily memorized, handy, and 

of good accuracy. 
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RESUME 

L'évaluation appropriée du coefficient de frottement f est d'une grande importance dans 

la bonne résolution des problèmes d'écoulement turbulent. La formulation rationnelle 

actuelle de f est celle développée par Colebrook en montrant que f dépend de la rugosité 

relative / hD  et du nombre de Reynolds R, à travers une équation implicite. La 

nouvelle formulation développée ici présente f en fonction non pas du nombre de 

Reynolds habituel R mais d'un paramètre sans dimension, noté 
*

R , représentant le 
rapport des forces de frottement aux forces visqueuses. Agissant comme un nombre de 

Reynolds, il est démontré que 
*

R est régi par une équation implicite de / hR  et de R. 

Le calcul de la valeur du coefficient de frottement à l'aide de la nouvelle formulation 

donne un écart maximal de 0,25% par rapport à la valeur de f dérivée de l’équation de 

Colebrook. À la fin d'une étape de calcul supplémentaire, l'écart tombe à un maximum 

de 0,04% seulement. Cette étape de calcul est recommandée pour résoudre les 

problèmes nécessitant une grande précision. Toutes les formules développées ici 

peuvent être classées dans la catégorie des équations courtes, facilement mémorisables, 

maniables et de bonne précision. 

Mots clés : Coefficient de frottement, Darcy-Weisbach, nombre de Reynolds, Conduite. 

INTRODUCTION 

In a turbulent flow regime, the friction factor, denoted f, plays a very important role. It 

is a dimensionless parameter that relates the head loss in a pipe to its length/diameter 

ratio and dynamic pressure (Jaeger, 1956). It is governed by the well-known implicit 

Colebrook formula (1939) which states that f depends on the relative roughness / hD  

and the Reynolds number R. Colebrook formula is one of the few relationships that has 

aroused so much interest probably due to its importance in solving a number of main 

problems such as pressure drop calculation in pipe-flow. Various approaches are 

available to solve the Colebrook equation and find the appropriate value of f. The best 

known of the time was the graphical solution using the Rouse and Moody diagrams, 

established respectively in the years 1943 and 1944. Due to the low accuracy, the value 

of f provided by the reading of theses charts should be as mere guidance value or 

approximate. With the advent of modern laptops, the Colebrook equation can be solved 
iteratively using an Excel spreadsheet or a programming solver, but this approach 

requires more computational time. Recently (Brkić, 2011), Lambert W function was 

used for the calculation of f and this approach seems to avoid iterative calculation and 

reduces the relative errors. This probably has a purely theoretical and mathematical 

interest, but has no practical impact in the daily work of an engineer who needs a fast 

and reliable calculation of the friction factor. It is also the major concern of students 

faced with their exam problems. There is also the trial-and-error method which is today 
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completely obsolete. One of the research workers’ most noticed and preferred 

approaches is to solve the Colebrook equation by an explicit approximate equation. In 

this regard, one may counts up in the literature no less than forty approximate formulas 

solving for f. These differ in both form and accuracy (Zeghadnia et al., 2019). The craze 

to find an easier-to-compute formula result still remains today. There are short and 

simple formulas but less accurate than the long and more developed formulas. The most 

effective will be the one which will admit the best trade-off between time of 

computation and precision of results. It is better to use short formulas that are less 

accurate than long formulas that are more accurate for at least three reasons. Long 

formula requires a longer computation time, they are not easy to memorize and present 

the risk of omitting terms when key stroking. The short formulas available in the 
literature generate a deviation in f of the order of 2% to 3% in the whole range of 

turbulent flow corresponding to Reynolds number 2300R  . Considering, for instance, 

the three main problems encountered in turbulent pipe-flow, 2% deviation in f causes 

the same deviation in the slope of the energy grade line computation, 1% in the 

discharge calculation, and only 0.4% in the determination of the pipe diameter. It is 

therefore not a “disaster”. 

In this technical note, a new formulation of the friction factor f is presented not 

dependent on the usual Reynolds number R but on a dimensionless number denoted
*

R . 
This acts as a Reynolds number taking into account the effect of the friction forces. It 

can be, therefore, considered within a constant as the shear Reynolds number. It is 

shown that 
*

R depends on both the Reynolds number R and the relative roughness

/ hD , through an implicit equation. A good approximate relationship has been found 

which allows calculating f with an acceptable accuracy when compared to the f value 

given by the Colebrook equation. If the problem under considerations requires a more 

accurate value of f, an additional step calculation is then necessary. This causes a 

significant drop down in the deviation in f. Thanks to the introduction of the 

dimensionless parameter
*

R , it was possible to derive an explicit approximate 

relationship of the shear velocity
*u . 

NEW FORMULATION OF THE FRICTION FACTOR 

Using the Rough Model Method (Achour and Bedjaoui, 2006) or eliminating the 
friction factor f between the Darcy-Weisbach (1854) and Colebrook (1939) equations, 

the following dimensionally consistent uniform flow relationship can be worked out as: 

*

10.04
4 2 log

14.8
h

h

Q g A R S
R R

 
   

 
          (1) 
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where Q is the discharge, S is the slope of the energy grade line,  is the absolute 

roughness, g is the acceleration due to gravity, A is the wetted area, hR  is the hydraulic 

radius and   is the kinematic viscosity. The parameter 
*

R is a dimensionless number, 

acting as a Reynolds number, expressed as: 

3

* 32 2
hgR S

R


           (2) 

Eq.(1) is valid for any channel and pipe shape. It is also applicable in the whole domain 

of turbulent flow, including smooth, transitional, and rough flow regimes. The Darcy-

Weisbach and Colebrook equations can be written as follows: 

2

8 h

V
S f

gR
                       (3) 

1 2.51
2log

14.8 hRf R f

 
    

 

          (4) 

where V is the mean velocity of the flow. 

The quantity hgR S in Eq.(2) corresponds to the shear velocity u* also called friction 

velocity (Schlishting, 1979) having dimension of velocity. Thus, Eq.(2) can be re-

written in the following form: 

*
* 32 2 hu R

R


           (5) 

With regard to the form of the Eq.(5), the dimensionless number 
*

R would give a 

measure of the ratio of friction forces to viscous forces and consequently the relative 

importance of these kind of forces. On the other hand, Eq.(3) allows writing that: 

2
*2

8

V
u f                         (6) 

or: 

*

8

f
u V           (7) 

Multiplying both sides of Eq.(7) by 32 2 /hR   and knowing that 4/h hDR  , one 

may derived the following result: 



New formulation of the Darcy-Weisbach friction factor  

17 

* /
32 2 32 2

4 8

h hu R VD
f




           (8) 

which is reduced to : 

* 4R R f           (9) 

When the proper values of R and f are known, Eq.(9) gives the exact value of 
*

R . It is 

worth noting that the equality 
*

R R is obtained for 1 / 16 0.0625f   . This 

corresponds to the relative roughness 0.037/ hD  according to Eq.(4) for R  . 

The flow is in the fully rough domain. 

With /V Q A , Eq.(3) expresses the discharge Q as: 

8
hQ A gR S

f
         (10) 

Comparing Eqs.(1) and (10) results in: 

*

1 10.04
2log

14.8 hR Rf

 
   

 
        (11) 

The friction factor f is therefore presented as a function of both the relative roughness 

/ hR and the dimensionless number
*

R . 

Extracting 1/ f from Eq.(9) and inserting it in Eq.(11) gives: 

*

*

1 10.04
log

2 14.8 h

R R
R R

 
   

 
        (12) 

Eq.(12) shows that 
*

R is governed by an implicit function of both the relative roughness 

/ hR and the Reynolds number R. To avoid the implicit calculation induced by the 

Eq.(12), one may use the following explicit approximate relationship : 

1

*

0.9

/ 5.45
2 log

3.7

hD
R R

R




  
    

  
        (13) 
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As shown in Fig.1, the maximum deviation between Eqs.(12) and (13) is about 1% only. 

The deviation depends strongly on the relative roughness and the Reynolds number 

values. 

 

Figure 1: Deviation in 
*

R between Eqs.(12) and (13) 

When the relative roughness / hD  and the Reynolds number R are given, Eq.(11) 

along with Eq.(13) allows computing the friction factor f with a maximum deviation of 

less than 0.25% as shown in Fig.2. 

 

Figure 2: Deviation between Eqs.(4) and (11) 

SHEAR VELOCITY 

The shear velocity 
*u can be expressed when combining Eqs.(5) and (13). Hence: 

1*

0.9

/ 5.45
32 2 2 log

3.7

h hu R D
R

R







  
    

  
        (14) 

Rearranging Eq.(14) results finally in : 
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11
*

0.9

/ 5.45
log

14.816 2

h hR R
u R

R

 
   

    
  

        (15) 

Knowing that 4 /hR VR   where V is the mean velocity, Eq.(15) can be rewritten as : 

1*

0.9

/1 5.45
log

14.84 2

hRu

V R




  
    

  
       (16) 

IMPROVEMENT OF THE FRICTION FACTOR CALCULATION ACCURACY 

To improve the friction factor f calculation accuracy, one may try to find a substitute 

relation to the equation (13), but it is not self-obvious. The simplest way is to consider 

an additional step in the calculation of f using Eqs.(9), (11), and (13). The calculation 

procedure can be described by the following steps: 

1. Let’s denote 
*

0R the value of 
*

R  given by Eq.(13) for the known values of both the 

Reynolds number R and the relative roughness / hD . The corresponding value of f is 

*

1 0( )Rf , worked out from Eq.(11). We have seen earlier that the maximum deviation 

caused by this first step calculation on the f value, when compared to Colebrook Eq.(4), 

is less than 0.25%. 

2. Compute in this additional step 
*

1 1( )R f using Eq.(9), whence: 

*

1 14R R f        (17) 

3. Introduction 
*

1 1( )R f so calculated into Eq.(11) gives 2f as the second value of f. 

It was observed that the maximum deviation between 2f and f given by the Colebrook 

Eq.(4) is less than 0.04% as it is reported in Fig.3. This result was obtained for 

2300R  and 0 0.05/
h

D  , thus encompassing the whole domain of turbulent 

flow. Thus, at the end of the second calculation step, the deviation on f experienced a 

significant drop down from 0.25% to 0.04%. In fact, 
*

0R served as an appropriate initial 

guess value rapidly converging the only two-steps iterative process. The computation 

can stop at this step because the relative error in f is largely sufficient to solve accurately 

practical problems. 
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Figure 3: Deviation between Eqs.(4) and (11) at the end of an additional 

calculation step 

NUMERICAL EXAMPLE 

For the following data, compute the Darcy-Weisbach friction factor f using Eq.(11) 

along with Eq.(13), after the first calculation step and then after the second calculation 

step. What should be the deviation in comparison with the value of f given by 

Colebrook equation?  

0.00001/
h

D  , 2,000,000R   

Let’s assume the following definitions: 

ef = the “exact” value of f computed using Colebrook Eq.(4). 

1,af  = the approximate value of f after the first step of calculation. 

2,af  = the approximate value of f after the second step of calculation. 

*

0,aR = initial guess value of 
*R computed using the approximate Eq.(13) and giving 

1,af  by the use of Eq.(11). 

The subscripts “1”, “2”, “0”, “ a ”, and “e” denote respectively “first step calculation” 

“second step calculation”, “initial value”, “approximate value”, and “e” “exact value”. 

1. The iterative process applied to the implicit Eq.(4) of Colebrook gives ef value as:  

0.0107206ef   

2. The exact value of 
*R is given by the implicit Eq.(12). The calculation shows that: 

310 410 510
610

710 810

0.04

0.02

0

0.02

0.04

0 / 0.05hD 

R

(%)
f

f


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*
828322.642eR   

Note that the exact value of 
*R can also be computed using Eq.(9) in which ef f . 

3. The intial approximate value of 
*R is easily worked out from Eq.(13). The final 

result is: 

*

0, 825804.52aR   

4. The deviation between the exact value of 
*R given in step 2, i.e. 

*

eR , and the 

approximate value computed in step 3, i.e. 
*

0,aR , is then : 

* *

0,

*

825804.52 828322.642
100 100 0.304%

828322.642

a e

e

R R

R

 
     

5. The approximate value of f, i.e.
1,af , is given by Eq.(11) in which the value of 

*R is 

that of 
*

0,aR computed in step 3. Hence: 

1, 0.01072536af   

6. The deviation between ef and 
1,af is then: 

1, 0.01072536 0.0107206
100 100 0.0443%

0.0107206

a e

e

f f

f

 
     

7. This step aims to compute the deviation between ef and 
2,af after an additional 

calculation step following the procedure described above. Eq.(9) gives: 

*

1 1,4 aR R f  

The final result is: 

*

1 828506.369R   

8. Introducing 
*

1R in Eq.(11) gives a second approximate value of f , i.e. 2,af , as: 

2, 0.0107202af   
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9. The deviation between ef and 
2,af is: 

 

CONCLUSIONS 

A new formulation of the friction factor 
*

/( , )hR Rf  was presented [Eq(11)], where 

*R is a dimensionless parameter, acting as a Reynolds number taking into account the 

effect of the friction forces. It was shown that 
*R depends on both the Reynolds number 

R and the relative roughness / hR  through an implicit equation [Eq.(12)]. An 

approximate relationship has been derived giving 
*R -value with a maximum deviation 

of 1% [Fig.(1)]. The friction factor 
*

/( , )hR Rf  was then calculated with a maximum 

deviation of 0.25% [Fig.(2)] when compared to the friction factor given by the 

Colebrook equation [Eq.(4)]. If the problem under considerations requires a more 

accurate friction factor value, an additional step calculation has been suggested to 

improve the accuracy causing the deviation on  f  to drop down significantly from 

0.25% to 0.04% [Fig.(3)].  

REFERENCES 

ACHOUR B., BEDJAOUI A. (2006). Discussion to “Exact solution for normal depth 

problem, by SWAMME P.K. and RATHIE P.N., Journal of Hydraulic Research, 

Vol.44, Issue 5, pp.715-717. 

BRKIĆ D. (2011). W solutions of the CW equation for flow friction. Applied 

Mathematics Letters, Vol.24, Issue 8, pp.1379-1383. 

COLEBROOK C.F. (1939). Turbulent Flow in Pipes with Particular Reference to the 

Transition Region Between Smooth and Rough Pipe Laws, Journal of the 

Institution of Civil Engineers, Vol.11, pp.133-156. 

DARCY H. (1854). Sur les recherches expérimentales relatives au mouvement des eaux 

dans les tuyaux, Comptes rendus des séances de l’Académie des Sciences, n°. 38, 

pp. 1109-1121. 

JAEGER C. (1956) Engineering Fluid Mechanics, Blackie & Son Ltd., Glasgow. 

MOODY L.F. (1944). Friction factors for pipe flow, Transactions of the American 

Society of Mechanical Engineers, ASME, Vol.66, Issue 8, pp.671-684. 

 

2, 0.0107202 0.0107206
100 100 0.0037%

0.0107206

a e

e

f f

f

 
   



New formulation of the Darcy-Weisbach friction factor  

23 

ROUSE H. (1943). Evaluation of boundary roughness, Proceeding of the 2nd 

Hydraulics Conference, New-York, Vol.27, pp.105-116. 

SCHLICHTING H. (1979). Boundary layer theory, New York, McGraw-Hill. 

ZEGHADNIA L., ROBERT, J. L., ACHOUR, B. (2019). Explicit Solutions For 

Turbulent Flow Friction Factor: A Review, Assessment and Approaches 

Classification, Ain Shams Engineering Journal, Vol.10, Issue 1, pp.243-252. 


