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Abstract.  

This paper deals with the resolution of the job shop problem with blocking, where the machines have a limited or 
no storage space. To solve this problem, we compare between two different metaheuristics based on Tabu Search 
TS and Genetic Algorithms GA. The first one lays on a very efficient neighbourhood exploring and evaluation 
techniques, which improve the reliability of the method. These techniques operate on the critical path found in 
the alternative graph and always construct feasible solutions. The second lays on two different paradigms of 
parallelization with GA. The first uses a network computers and the second use GPU with CUDA technology. 
The results are very interesting. In both methods, we obtain a very significant reduction of computation time 
compared with the existing literature results. 
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1. Introduction 

In the literature, the job shop scheduling problem (JSB) is defined as follows: a set of n jobs where 

each job i (i=1,…,n)  is composed of ki operations, have to be processed on a subset of m specified 

machines (without going back to the same machine)  according to a given order. Each machine has to 

process one operation at a time without interruption. Taking into account all these constraints, our aim 

is to find a schedule of all operations such that the latest completion time operation is minimized. The 

job shop problem with blocking (JSPB) is a version of the (JSB) with no-intermediate buffers, i.e. 

where machines have no storage space thus a job has to wait on a machine until it is processed on the 

next one.  

Several papers have tackled the resolution of this problem but its NP-Hardness, described in detail 

by Hall and Sriskandarajah (1996), is the real obstacle to find an exact solution. Moreover, researchers 

have not succeeded in finding an exact method to solve the JSPB with more than 10 jobs × 10 

machines. For this reason, they have turned their attention into the investigation of meta-heuristics 

which, though they do not guarantee to find the optimum, can in general reach good solutions in 

acceptable time.  

Major investigations in the literature consider the flow shop problem with blocking (FSPB), while 

the number of papers that have tackled the JSPB is poor. Since the publication of the first work 

dealing with the JSP, a great effort has been made for the design of branch-and-bound (B&B) 

algorithms. Among others, we can cite Carlier and Pinson (1989) algorithm which solves the problem 

with size 10×10 proposed by Fisher and Thompson (1963).  
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Then, Carlier and Pinson (1994) introduced the possibility of fixing the alternative arcs without 

branching, which made their algorithm very efficient. The majority of subsequent works were based 

on their results. Further efforts have focused on approximate methods and metaheuristics, Brizuela et 

al. (2001) have developed a Genetic algorithm for solving the job shop problem with blocking and no-

wait constraints and they presented numerical results for four selected benchmarks. Klinkert (2001) 

and Gröflin and Klinkert (2004) introduced a generalized disjunctive graph for modeling different 

types of scheduling problems, in addition, they developed a local search method for the job shop 

problem with generalized blocking constrain. Gröflin and Klinkert (2009) proposed a new 

neighborhood function for the Tabu Search applied to the JSPB which always gives feasible 

neighbors. As for the parallel approach, a parallel implementation of the B&B method has been 

proposed by Perregaard and Clausen (1998), this algorithm is based on the results of Carlier and 

Pinson (1989) and Brucker et al. (1994). AitZai et al. (2012) have proposed a parallel genetic 

algorithm based on the master/slave model with a rule-based priorities coding and a parallel branch-

and-Bound procedure for the JSPB. 

Ben Mabrouk (2009) proposed a parallelization of a hybrid genetic–Tabu search-based algorithm 

for solving the graph coloring problem. Work on the parallelization of GA is scarce. Indeed, several 

parallelization techniques are proposed in the literature, especially for genetic algorithms, such as fine-

grained methods (Gorges-Schleuter, 1989; Manderick and Spiessens, 1989; Mühlenbein, 1989) and 

the parallel hierarchical methods (Gruau, 1994), but works on the parallel GA using GPU are more 

rare. 

The Tabu search metaheuristic has been applied to the JSPB by different authors, Mati et al. 

(2001) and Gröflin and Klinbert (2009). The classical neighborhood used in the literature, consists in 

replacing an alternative arc in the critical path by its alternative. This generally leads to new unfeasible 

neighbor solutions. To correct this, Mascis and Pacciarelli (2002) have proposed an algorithm that 

restores the solution’s feasibility. But this technique increased the execution time. 

Recently, Pranzo and Pacciarelli (2016) presented an iterated greedy metaheuristic,  Dabah et al. 

(2016) described a parallel Branch and Bound method, Louaqad and Kamach (2016) elaborated a 

mixed Integer Linear Programs for Blocking and No-Wait Job Shop Scheduling Problems in Robotic 

cells and Dabah et al. (2017) proposes a new tabu search neighborhood based on reconstruction 

strategy. This neighborhood consists to remove arcs causing the infeasibility and rebuild the neighbor 

solutions by using heuristics. 

In this paper, we try to contribute to these efforts by investigating, at first the performance of Tabu 

Search procedure in the resolution of the problem. Therefore we used a neighbourhood exploring and 

evaluation techniques proposed in Dabah et. al (2017), which accordingly improve the reliability of 

the method. These techniques operate on the critical path found in the alternative graph and always 

construct feasible solutions. In the second time, we use two different paradigms of parallelization with 

GA. The first ones use network computers Aitzai and Boudhar (2013) and the second use GPU with 

CUDA technology AitZai et. al (2013). In both methods we have obtained a very significant reduction 

of computation time, compared with the existing literature results. Our aim is to improve the results 

found in the literature. 

 The remainder of this paper is organized as follows; Section 2 presents the problem formulation 

which is based on alternative graphs. Section 3 provides the Tabu search metaheuristic and some 

application techniques that enabled us to improve its performance. In section 4 we give the details of 

our parallelization methods based on CPU and GPU models. Comparison and analysis of the results 

obtained by the proposed methods is given in Section 5. Finally, Section 6 provides a general 

conclusion and gives some prospects for future work. 
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2. Problem Formulation 

This section is concerned with the modelling of the JSPB using alternative graphs as detailed in 

Mascis and Pacciarelli (2002). 

The simple job shop scheduling problem is usually modelled in two different ways: either by 

linear programming or conjunctive graphs. In the latter, the orientation of the conjunctive arcs defines 

the order in which the various operations are performed on any given machine. With the advent of the 

blocking constraint, the latter cannot be modelled by conjunctive graphs; this is why another 

modelling approach is used in graph theory, called modelling by alternative graphs. In this type of 

graphs, a new concept, alternative arcs, is introduced. Two operations connected by an alternative arc 

with weight zero, means that these operations can start at the same time, unlike disjunctive arcs that 

define a priority relationship between the operations. In this modelling approach, the vertices of the 

alternative graph represent the operations and the arcs defined are of two types: the conjunctive arcs 

(the priority arcs between the operations of the same job) and the alternative arcs. 

 

Figure 1 Example of a blocking operation 
 

 

 

 

 

 

 

 

 

 

The formulation by alternative graphs is a generalization of disjunctive graphs, Carlier and Pinson 

(1994). It is based on the triple (N, F, A) which represent the set of operations, the set of conjunctive 

arcs and the set of alternative pairs of arcs respectively. All arcs (i,j)∈F are fixed initially and fij is the 

arc's weight. Each element ((u,v),(h,k))∈A is a pair of alternative arcs (u,v) and (h,k). Let auv≥0 and 

ahk≥0 be the weights of the arcs (u,v) and (h,k) respectively. Let u and k be concurrent operations on 

the same machine j. We say that u or k is a blocking operation, because one of them must be processed 

first on j (see Figure 1). 

3. Tabu Search technique  

TS is a local search method. It consists in exploring the neighbourhood N(s) of a current solution 

s. At each iteration the best solution s'∈N(s) is chosen as the new solution, (even if its quality is worse 

than the current solution s). This strategy can lead to cycles, to avoid them we store the last k solutions 

in a short term memory (stm) called Tabu list. In the process of TS, all solutions in stm are prohibited. 

With the iterative computation process, it is possible to find an improved solution s belonging to the 

Tabu list. So, it is possible to accept this solution, despite its Tabu restriction, if it satisfies aspiration 

criteria. 

The principle of Tabu Search is given by the following algorithm. 

 
Algorithm TS; 

Step 1. Find an initial solution s0. 
Step 2. Let z=s0, i=0 and TL=Ø  (TL: Tabu list) 
Step 3. i=i+1; 

Step 4. Find the neighborhood subset N*(si) ⊆N(si) thus, ∀ si+1∈N*(si) : (si,si+1)∉TL; 
Step 5. Replace si by si+1 such that si+1 is the best solution in N*(si);  
Step 6. Update TL; 
Step 7. If Stopping condition is not satisfied, Go to 3; 
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End. 

 

3.1. Tabu Search Application 

TS has shown its efficiency in solving many optimization problems. In this section, we present the 

implementation of: 

[1] generating an initial solution, 
[2] defining a local neighborhood search procedure, 

[3] defining an evaluation function, 

[4] defining the Tabu List and the Aspiration Criteria. 

At first, we generate a random initial solution, using the priority rule-based encoding. This type of 

coding allows us to have every time a feasible solution thanks to the decoding algorithm. 

The efficiency of this method depends mainly on the neighborhood function. Therefore, we 

present in the sequel, a new technique which improves the neighborhood function given by Gröflin 

and Klinkert (2009). To do this, we need the representation based on alternative graphs, presented in 

Section 2, and some definitions given below (Mascis and Pacciarelli, 2002). 

Definition1: A selection S is a set of alternative arcs obtained from A, where only one element per 

pair is selected. Thus, for all ((u,v),(h,k))∈A, if (u,v)∈S then (h,k))∉S. 

Definition2: We say that a selection S is complete if one arc is selected from each pair of 

alternative arcs in the set A. 

Definition3: Let ((u,v),(h,k))∈A a pair of alternative arcs. We say that the arc (u,v) is selected in S 

if (u,v)∈S. Otherwise, (u,v) is excluded from S if (h,k)∈S. Also we say that the pair is unselected if 

neither (u,v) ∉S nor  (h,k)∉S. 

Definition4: For any selection S, let G(S)=(N,F∪S). S is consistent if G(S) has no positive length 

cycles. 

Definition5: Let (i,j) be an alternative arc in G(S), we call tail(i,j) the job containing operation j, 

head(i,j) the job containing  operation i and l(i,j) the longest path value from i to j. 

Using this notation, any solution (schedule) is associated with a complete consistent selection S in 

the alternative graph G(S). Its evaluation V(G(S))=l(0,z) is the value of the longest path P in G(S); 

where 0 and z are the Source and the Sink of G(S) respectively. 

Let a complete consistent selection S and (u,v)∈P be given. The transition from S to a new 

complete selection S’ is performed by interchanging an arc (u,v)∈P (in the critical path) with its 

alternative (h,k), where ((u,v),(h,k))∈A.   

In most cases, this neighborhood function gives unfeasible solutions; therefore Gröflin and 

Klinkert (2009) have proposed an algorithm to fix unfeasible solutions. In this section, we describe a 

significant improvement in this neighborhood function that we shall detail later. 

Let T and S be a set of alternative arcs and a complete consistent selection respectively; T=∅. The 

construction of S’ from S is done as follows: 

[1] Choose an arc (i,j) from S and remove it (S=S−{(i,j)}), and set T=T∪{(i,j),(ia,ja)} such that 
(ia,ja) is the alternative arc of (i,j) in A.  

[5] Remove all arcs (p,q) in S ((S=S−{(p,q)})) that verify : tail(p,q)=tail(i,j), and set 

T=T∪{(p,q),(pa,qa)}, such that (pa,qa) is the alternative arc of (p,q) in A. 

[6] We  use  the  AMCC  Algorithm  presented  in  Mascis and Pacciarelli (2002)  to  complete  in  

S’  the removed arcs  from  S.  AMCC  takes  as  input  the  graph  G=(N,F∪S),  then  

completes the arcs  that  were  removed  in  steps  (1)  and  (2)  by  choosing  from  T  the  pair  

of  arcs  (i,j) , (h,k) ∈ T  which  satisfy  the  condition:  
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l(0,h)+ahk+l(k,z)=max{l(0,u)+auv+l(v,z)}; ∀(u,v)∈T; where 0 and z are the Source and the Sink 

of G(S) respectively; and ahk is the weight of the arc (h,k). This means that we choose the arc 

(h,k) that maximizes the value of Cmax. 

Algorithm Neighborhood function  

Input: G= (N, F∪S), T≠ Ø and S’=Ø. 
Output: complete consistent selection S’. 
while (T≠Ø)  

   do begin 

1. Select the alternative arc pair ((h,k),(i,j))∈T by AMCC; let (h,k) be the arc to be added to 
S’: 

2. S’=S’ ∪{(h,k)}, T:=T- {((i,j),(h,k))}; 

3. while (∃((u,v),(p,q))∈T, such that l(v,u)+auv >0) 

                 do begin  S’=S’∪{(p,q)};  

         T=T−{((u,v),(p,q))} ; 
                 end; 

                end;  

End. 
 

By the algorithm above, we construct feasible and appropriate neighboring solutions. 

3.2. Solutions’ Evaluation  

The efficiency of a local search approach depends heavily on the evaluation method. However, 

each solution’s evaluation, in our case, must compute the longest path in G(S) and this takes 

considerable time. It has been shown that nearly 90% of the total execution time is performed by the 

evaluation of solutions (Gröflin and Klinkert, 2009). Taking into account this consideration, we have 

implemented an evaluation strategy that calculates only the starting times of a subset of operations 

which is being involved by our neighborhood function algorithm given above. This is done, without 

repeating the whole longest path calculation. 

3.3. Short and long Term List 
Such neighborhood function may lead easily to recently visited solutions which form a cycle. 

This means that failing to find a better solution among them, does not guarantee that no better solution 

exists. This is why the best solution found by such Neighborhood function is called local optimum. To 

improve efficiency of this kind of neighborhood function we have used a Tabu List which avoids 

solutions leading to cycles. In order to do so, we put in a FIFO Tabu List, the k last solutions. It’s not 

interesting to store all the elements composing the solutions in the Tabu List; this may generate a 

cumbersome list. So k is the size of the Tabu List and its elements must include sufficient information 

which accurately reflects the visited solutions. In our case, the Tabu list is composed, only, of the 

numbers of the alternative pair arcs affected by the transformation. 

To avoid rotating around solutions with cycle sizes greater than k (k is the size of the Tabu List), 

we use the Long-term memory for storing values of Cmax already visited. A check of each identical 

Cmax’s sequences is done at every neighborhood function end. 
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3.4. Aspiration Criteria    
We have taken over the aspiration criteria adopted by several applications of Tabu Search to Job 

Shop problem, this criteria is to remove the Tabu status of any solution when it leads to a better one.  

4. Parallel Genetic Algorithm 

In this section, we describe two different approaches of priority rules-based encoding GA 

parallelization. The first one is based on CPU networking and the second is based on GPU.  

The basic design of metaheuristics offers improved strategies for finding solutions to 

combinatorial optimization problems. Parallelism offers an improvement of these methods by 

intelligently exploring many more solutions in very satisfactory times. By applying convenient 

parameters, parallel metaheuristics are more robust than their sequential versions in terms of the 

quality of the solutions obtained. 

When solving the job shop scheduling problem with blocking in an exact way (AitZai et. al 

2012), we noticed very large number of solutions explored to reach the optimal solution. However, a 

lot of works are oriented towards heuristics to solve the problems of sizes bigger than 10 jobs × 10 

machines. Despite this, the quality of the solutions returned by these approximate methods still 

requires improvements through integrating parallelization techniques. 

Thanks to their structure, GA adapt very well to parallel execution. So, with the growing 

popularity of parallel computers, parallel versions of GAs have been introduced and are subject to 

much research. 

4.1. Using CPU 
The parallelization of the GA can be achieved in two different ways: The first way uses the 

principle of multiple communication populations and the second one uses the master-slave principle. 

Both types of parallel GA have been widely used to reduce the execution time of many applications. 

The choice between the two parallel methods is determined by several factors, such as ease of use or 

execution and their potential to reduce execution times. Generally, parallel GA with the master-slave 

method are simpler because it is easier to configure their control parameters and their implementation. 

On the other hand, the GA with the multiple communication populations allow more parallelism, but 

are more difficult to implement because in this type of parallelism, it is necessary to define the values 

of several additional parameters, besides the usual parameters of the GA itself which affect the 

efficiency and quality of the solutions found by this method. 

In this parallelization model of genetic algorithms, a master station is dedicated to the steps: 

selection, crossover and mutation. The rest of the slave stations concerned with the assessment of the 

individuals fitness (see Figure 2). This is motivated by the fact that the 90% of the overall computation 

time of this method is allocated to the generated solutions fitness assessment. 

Figure 2 Model of computation parallelisation 
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The advantages of this technique are numerous: 

- The GA master-slave algorithm explores the search space in exactly the same way as a 
sequential GA. Therefore, the basic structures used in the design of the sequential GA remain 
the same. 

- Its implementation is very simple. 

- In many applications, the GA in master-slave mode offers significant improvements to the 
final results. 

A master computer ensures the generation of populations of individuals using selection, crossover 

and mutation. Then the generated solutions are sent to the slave stations to calculate the fitness. In this 

way, the overall computing time is shared between all computers in the network.  

This parallelisation method keeps all the characteristics of the sequential GA, without any 

changes in parameters already set. The only parameter that changes in the CPU parallel algorithm is 

the size of the population which directly depends on the number of computers on our star-shaped 

network, since the master computer divides the population during processing into a number, i.e. 

proportional to the number of computers that are available on the network, then it sends the sub-

populations to the various slave computers where the calculation of the fitness is carried out. In the 

next section we present another parallelization paradigm based on the exploitation of the graphics 

processor (GPU). 

4.2. Using GPU 
The growth of the video game industry and multimedia applications has prompted manufacturers 

to produce more efficient graphics processors in terms of power computing.  This development 

follows a different way other than the development of CPU processors. This discrepancy can be 

explained by the difference that exists between the categories of problems to deal with. Indeed a CPU 

aims to complete a task as quickly as possible against a GPU, which performs a similar treatment on 

multiple data during the same time and as fast as possible. 

The use of this computing power outside the multimedia field is called GPGPU (General Purpose 

Graphics Computing Unit). To take advantage of this computing power, manufacturers have 

introduced tools to exploit these resources. Thus NVIDIA proposed an environment of a parallel 

computing architecture, which uses the parallel computing capability of NVIDIA GPUs, called CUDA 

(Compute Unified Device Architecture).  The latter involves a compiler and a set of development 

tools, which can be used with the C language to write code designed to run on the GPU. To understand 

the idea of such an environment we must first introduce the hardware and software models. Unlike 

CPUs, graphics processors are optimized to perform the same treatment on a large amount of data. 

This difference exists in both of the memory system and the execution of the instructions. 

GPUs are built in a scalar manner i.e. they have several computation units, which can carry a 

limited number of instructions at the same time. A GPU consists of several independent 

multiprocessors; each of which contains 8 Scalar Processors SP, two specialized processors and a 

shared memory. To manage multiple threads running several programs, the multiprocessors use a new 

architecture called SIMT (Single Instruction Multiple Thread) unlike SIMD (Single Instruction 

Multiple Data) used in early versions of CUDA. These multiprocessors connect each thread to a scalar 

processor SP. Then, each thread can be run independently with its own instruction address and its own 

registers. SIMT Multiprocessors create, manage and launch instructions on groups of 32 elements, 

each element being called a thread (not to be confused with a CPU thread) and each group of 32 

elements is called a warp. Each multiprocessor is composed of: 

• A set of 32-bit registers. 
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• A shared memory cache. 

• A constant memory cache that is shared by all SPs (accessible in read-only). 

• A cache read-only access memory called texture that is also shared by all SPs; each access to 

this memory area is via specific textures units. 

Next, we try to identify the parts of the parallel GA algorithm that can be delegated to the GPU. 

First, we have used the same GA parallelization idea (Master/Slave) described in the beginning of this 

section, i.e. which delegates the decoding of solutions and the computing of chromosomes fitness to 

the GPU. 

To do this, we must define the main memory space needed: 

• A Storage space for the operations processing time vector. The size of the latter is n which 

represents the number of operations. Hence, the ith vector cell represents the processing time of 

the ith operation. 

• A Storage space for the machines vector. The size of the latter is n. Hence, the ith vector cell 

contains the machine number which will execute the ith operation. 

• A Storage space for the chromosomes vector (matrix chromosomes), containing the 

chromosomes to be treated on the GPU for decoding and evaluation. 

Another storage space is needed for decoding and evaluating solutions: 

• An m×nbc storage space containing, for each chromosome, the list of the ready operations that 

are to be performed, where, m is the number of machines and nbc the number of 

chromosomes.  

• An m×nbc storage space containing, for each chromosome, the status (available or not) of 

each corresponding machine.  

• An m×nbc storage space containing, for each chromosome, the list of the blocking operations 

on each machine.  

• An m×nbc storage space containing, for each chromosome, the available operations to 

perform. 

• An m×nbc storage space needed for each chromosome computing evaluation.  

• An n×nbc storage space containing, for each chromosome, the scheduled operations sequence. 

• An nbc storage space containing, chromosomes evaluation. 

As we can see, the algorithm requires much memory resources. In addition, memory accesses 

during the solution construction phase are very important; this can lead to a long execution time. To 

solve this problem and reduce memory access while optimizing bandwidth, we have followed the 

various optimization strategies described in the CUDA programming guide. So we have made the 

following choices: 

 

[1] The use of texture units to optimize bandwidth for accessing to the chromosomes matrix, 

operation processing time vector and the machines vector. 

[7] Stocking of the remaining data in global memory. 

[8] Each thread execution is a construction of a solution. In addition, this thread can access only 

the corresponding storage space. 

[9] The thread data are aligned side by side. This alignment gives more opportunities for different 

threads to coalesced memory access so as to reduce the latency of global memory accesses. 

[10] Access to the chromosomes data (operation processing time, appropriate machine, etc.) is 

done through the texture units. This allows us to harness the caching technique offered by the 

graphics controller, and also to increase the virtual bandwidth. 
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5. Results and Discussion 

In this section, we present the results obtained by Tabu search using our neighbourhood function 

and parallel GA with CPU’s and GPU’s that we have developed throughout this paper. 

All the presented results, for Tabu Search method have been tested on a dual-core Processor 2.10 

GHz with 2 GB of Memory. The programming language used is JAVA under windows 7. However, 

For the Parallel GA with CUDA, the tests were performed on a workstation characterized by the 

following: 2×CPU’s XEON E5620 2.40 Ghz; RAM 6GB (DDR2); OS Windows Seven 64 bit and 

GPU NVIDIA Quadro 2000 card with 01 GB. 

To make the process of comparison significant, we use the so-called Lawrence Benchmarks 

(Lawrence, 1984) which are widely utilized in the literature. Our results are compared with the best 

ones, already known in the literature (Gröflin and Klinkert, 2009). 

We have tested the performance of our methods on 20 instances with various sizes and 

difficulties. For each instance, five experiments are carried out and we select the best solution. The 

results obtained are summarized in Table 1. 

In Table 1, the first column reports the name of the instance; SZ is the instance size, Best_S is the 

best known solution (Gröflin and Klinkert, 2009), TS is the makespan given by our Tabu Search 

method and Nb_Iter is the iteration number used in TS.  

The results marked with (*) represent the instances that improve the best known solution in the 

literature. We notice that our Tabu search method has improved a great number of solutions. Of the 

forty Benchmarks tested, only four could not be improved. 

It may be interesting to observe the empirical dominance relationships between the resolution 

methods in order to deduce a classification. We say that a metaheuristic dominates empirically another 

if for all instances tested, the solutions values given by the first are better or the same that those 

obtained by the second, with at least one strictly better solution. According to the results of Table 2, no 

dominance relation can be observed.  

The first result to be noted is the efficiency of the metaheuristics in solving the Job Shop problem 

with blocking. The other result is: Despite the non-existence of no dominance relationship between 

our Tabu Search and Gröflin's Tabu Search with the tested examples, we can say that our Tabu Search 

is more appropriate according to the importance of improvements number. 

When solving the job shop problem with blocking, we noticed sometimes, the existence of 

several different longest paths in the graph that represent the solution i.e. they all have the same the 

Cmax value. Thus the establishment of an effective rule to make a choice between these longest paths 

is necessary. 

In this section, we present the influence of the selected longest path on the quality of the final 

solution found. Table 2 shows some instances with two different longest paths and the corresponding 

values of makespan. 
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Table 1 Tabu Search Results 

Instance SZ Best _S TS Nb_Ite

la 01 10x5 832 838 5000 
la 02 10x5 793 858 2000 
la 03 10x5 747 725* 5000 
la 04 10x5 769 756* 5000 
la 05 10x5 698 671* 5000 
la 06 15x5 1180 1167* 4000 
la 07 15x5 1091 1076* 3000 
la 08 15x5 1125 1110* 1800 
la 09 15x5 1223 1172* 500 
la 10 15x5 1203 1171* 400 
la 11 20x5 1584 1548* 1400 
la 12 20x5 1391 1378* 3700 
la 13 20x5 1548 1527* 580 
la 14 20x5 1620 1580* 600 
la 15 20x5 1650 1632* 400 
la 16 10x1 1142 1118* 6800 
la 17 10x1 1026 964* 500 
la 18 10x1 1078 1085 1800 
la 19 10x1 1093 1085* 3200 
la 20 10x1 1154 1095* 6800 
la 21 15x1 1545 1600 40 
la 22 15x1 1458 1455* 20 
la 23 15x1 1611 1549* 40 
la 24 15x1 1571 1482* 20 
la 25 15x1 1499 1441* 60 
la 26 20x1 2162 2069* 140 
la 27 20x1 2175 2170* 200 
la 28 20x1 2071 2055* 500 
la 29 20x1 2124 2025* 300 
la 30 20x1 2171 2088* 100 
la 31 30x1 3167 3031* 600 
la 32 30x1 3418 3380* 100 
la 33 30x1 3131 3112* 120 
la 34 30x1 3205 2962* 120 
la 35 30x1 3311 3066* 150 
la 36 15x1 1932 1925* 280 
la 37 15x1 2058 2027* 200 
la 38 15x1 1875 1732* 1500 
la 39 15x1 1950 1877* 220 
la 40 15x1 1936 1828* 200 

 

Path1 is the longest path in which the number of manipulated alternative arcs is maximum, while 

Path2 is the longest path in which the number of handled alternative arcs is minimum. We have 

observed that the results obtained by choosing Path1 are always better than choosing Path2. This can 

be explained by the fact that: increasing the number of alternative arcs handled generates increasing 

number of neighboring solutions and therefore we have more chance of getting on a path that leads to 

a neighborhood that contains a better solution. This has allowed us to fix the iterations number of our 

Tabu search to the maximum number of alternative arcs changed. 
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Table 2   Results obtained by varying the longest path 

Exa La_0 La_0 La_0 La_0 La_1 La_1

Path1 918 880 718 1210 1245 1658 

Path2 950 900 768 1280 1280 1703 

 

We present, in this part the gain obtained by harnessing the computing power of NVIDIA graphic 

cards (see figure 3).  

The results of our CUDA algorithm are shown in Table 3. The first column contains the instance 

name; the second one contains the number of solutions explored next to the Cmax value obtained by 

the Genetic Algorithm in CUDA. These results have been obtained by using the configuration of 66 

blocks with 16 threads per block (over a period of 300s), giving a total of 1056 threads. The third 

column represents the number of solutions explored next to the Cmax value obtained by the sequential 

Genetic Algorithm with a population size equal to 1056 and total execution time limited to 300s. One 

can easily notice the performance of CUDA computing in the number of explored solutions. 

Table 3    The number of solutions explored by GPU 

Insta
nces 

GA using CUDA  GA Using CPU 

Number of 
explored 
solutions 

Cma
x 

 Number of 
explored 
solutions 

Cmax 

La_0
5 

11827200 735 
 

2129920 740 

La_1
0 

9793536 1320 
 

1167360 1272 

La_1
5 

8220672 1737 
 

757760 1763 

La_1
7 

7913664 1087 
 

839680 1093 

La_2
0 

7028736 1239 
 

819200 1205 

La_2
5 

5067562 1733 
 

389120 1730 

La_4
0 

2881536 2180 
 

184320 2184 

 

Figure 3   Graphical representation of Table 3 
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6. Conclusion  

Our paper provides a comparison between three methods. The first approach is an improvement 

of the Tabu search method presented by Gröflin and Klinbert (2009) to solve the scheduling problem 

with blocking. This is done by designing a new neighborhood for local search. The solutions encoding 

is based on alternative graphs, and the evaluation function of every schedule is based on the longest 

path search, that we have also improved by recalculating, only the changes generated by the moves.  

This has allowed us to reduce significantly the computation time that we exploit in the 

exploration of a greater neighborhood. The obtained results are very satisfying because we have 

improved 36 instances from forty Benchmarks known in the literature. The second and the third 

approaches’ are two parallelization techniques applied on genetic algorithm, the first of which is a 

master / slave method which uses a network computer and the second exploits the GPU graphics 

processors under CUDA. The results obtained are also very interesting.  

An interesting improvement of our work in the future is to see the effect of parallelization of 

Tabu method proposed in this paper on the considered problem. 
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