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Abstract: Direct torque control (DTC) is an advanced and &mgontrol method for induction motor (IM)
drives has many advantages over other variableidémxy control methods, but it has a common disadganof
high torque ripple and stator flux ripple. In tipgper, DTC is applied for two-level inverter fed tMves based
on neural hysteresis comparators and the estintlagetbtor speed using the Kubota observer metheddan
measurements of electrical quantities of the mdlbe validity of the proposed methods is confirnigdthe
simulation results. The THD (Total Harmonic Diston) of stator current, torque ripple and statoftipple
are determined and compared with conventional Dai@rol scheme using Matlab/Simulink environment.

Keywords:. IM, Two-level DTC, Kubota observer, Neural hystése3HD.

1. Introduction

Getting high performance with an asynchronous nme;hrequires complex control including
requiring reliable information from process contrtitis information can reach the sensors, they
dedicated the weakest link in the chain, so itstie fill their functions by calculation algorithms
reconstructing the machine states, such toolsterename of estimators and observer for reasons of
cost or technological reasons, it is sometimesréstrictive measure some quantities of the system.
However these quantities may represent importaiotrmation for control or monitoring [1]. It is
necessary to reconstruct the evolution of thesebias that are not directly from the sensors. We
must therefore carry out an indirect sensor. Fas, tthe estimators are used or as appropriate,
observers [2].

The DTC control methods of asynchronous machinggaed in the second half of the 1980s as
competitive with conventional methods, based os@ulidth modulation (PWM) power supply and
on a splitting of flux and motor torque by magndigdd orientation, Indeed, the DTC command from
external references, such as torque and flux, doesearch, as in conventional commands (vector or
scalar) the voltages to be applied to the machinesearch "the best "state of switching of therter
to meet the requirements of the user [3].

Major disadvantage of DTC is the ripple on the dewgnd the flux and to remedy this last problem
one improves the control DTC by several technicqareeng these methods are modification the tables
of selection, the artificial intelligences whichirderested in this article and the flux is estiathby
the Kubota observer.
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In this work, our main objective is to exploit &dial intelligence tools namely: networks of
artificial neurons on the DTC controln this work, our main objective is to exploit &dial
intelligence tools namely: artificial neural netisron the DTC control, we use the adaptive observer
of Kubota to estimate the flow and we express tienation error then THD of stator current is
evaluated.

2. DTC control

Since Depenbrock and I. Takahashi proposed DTG aaoitthe asynchronous machine in the mid-
1980s, it has become increasingly popular. The @d@mand makes it possible to calculate the
control quantities that are the stator flux and #hectromagnetic torque from the only quantities
related to the stator and this without the intetia@mof mechanical sensors [4].

The principle of control is to maintain the staflux in a range. The block diagram of the DTC
control is shown in Fig.1

This strategy is based generally on the use ofehgsis comparators whose role is to control the
amplitudes of the stator flux and the electromagrtetque.
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Fig. 1 Structure of classical DTC.
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The DTC control method allows direct and indepehddactromagnetic torque and flux control,
selecting an optimal switching vector. The Fig.hdws the schematic of the basic functional blocks
used to implement the DTC of induction motor drivevoltage source inverter (VSI) supplies the
motor and it is possible to control directly thatet flux and the electromagnetic torque by the
selection of optimum inverter switching modes [#, 5
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Fig. 2 Voltage vectors.

The switching table allows to select the appropriaverter switching state according to the stéte o
hysteresis comparators of flux (cfland torque (ccpland the sector where is the stator vector flux
(ps) in the plan ¢, B), in order to maintain the magnitude of statoxfand electromagnetic torque
inside the hysteresis bands. The above considerallimvs construction of the switching table [5].

Table.1
The selection of electric tension

AQs ACe | Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6
O 1 V3 V4 Vs V6 Vl VZ
0 Vs Vs Vi V2 V3 Vi
1 1 Vz V3 V4 V5 V6 Vl
O V6 V1 Vz V3 V4 VS

3. DTC with neural hysteresis comparators and kubota observer
The principle of neural networks DTC with kubotasebver is similar to traditional DTC control.

The difference is using a neural networks contrditereplace the torque and flux hysteresis loop
controller, and using kubota observer for obsergipged of induction motor. As shown in Fig. 3.
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Fig. 3 Structure of the DTC control sensorless withral hysteresis and kubota observer.

606



© 2018 JARST. All rightsreserved

DrisA. et al., Journal of Advanced Research in Science and Technology, 2018, 5(1), 604-612.

3.1 Design of neural hysteresis comparators

Neural networks are mathematical models inspiredhiybrain’s functioning of the human being.
Their faculty of learning, generalization and apqimmation, make two new solutions for the modeling,
identification and control of processes by theitlighto process input-output data of the systerp [7
The choice of a neural network to improve the penénce of the proposed DTC control is obtained
after several simulation tests.

The hysteresis comparators is replaced by a peotepeuron network, comprising a 1 neuron input
layer, a four neuron hidden layer, and a 1 neurdput layer. The activation functions are of tansig
forms for the input layer and purelin for the hiddayer neuron, and trainlm for the output layer
neuron. Fig. 4 illustrates the architecture of tieural hysteresis comparator of torque and flux
hysteresis.

[—{ g v

Input  Process Input 1 Layer 1 af1}
Layer 2

afl1} Process Output 1 Output

Fig. 4 Architecture of the neural hysteresis cdtgrmf torque and flux.

3.2 Design of the kubota observatory

The estimators used in open loop, based on theolusecopy of a model representation of the
machine. This approach led to the implementatibsimple and fast algorithms, but sensitive to
modeling errors and parameter variations duringatjoa.

Is an estimator operating in a closed loop andritpein independent system dynamics. It estimates
an internal physical quantity of a given systensdabonly on information about the inputs and owstput
of the physical system with the feedback input h error between Estimated outputs and actual
outputs, using the K matrix gain to thereby adfhstdynamic convergence error [6, 7].

The structure of the adaptive observer of KUBOTAlustrated in Fig. 5, when the rotational speed
of the machine is not measured, it is considereghasnknown parameter in the observer's system of
equations based on the state model. This statelrnisogigen below [5, 6, 7].

F———
—
Fig. 5 Structure of the adaptive Kubota observer.
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The modeling the observer KUBOTA

» Statemodel
{x[: AX + Bu [A]:{All Alz} X = I's (3)
y = & A21 A22 br
So the observatory associated with this moderitem as:
-
oK _~ 4
—=AX+B +G(I _i" G= 90 92 93 94
dt s ® S) —d2 01 ~—94 093

By askingthae=x-%X  estimation errotvimen the model and the observer:

» Estimation error
de_ - ~ [0 Akw B _ (©®)
a—(A—GC)e—AAx T AA = A- A= {0 A },Aw =w-Ww
. Adaptation mechanism
The speed adjustment mechanism is derived fronapipdication of Lyapunov theorem on system
stability. Let Lyapunov function defined positive:

2
V = eT e + M (6)
A
Otherwise, the derivative of this function with pest to time is negative:
av dw 7
T: eTQe_ZAW[k(eiSafrﬁ_eisﬁfra_%)} ()
With:

eisa ~isa " isaeisp " isB i sB
(8)

Q = (A-GC )T+(A—GC)

Equation (8) must be set negative according td_ffagunov stability theory. Therefore, by careful
selection of the gain matrix G, the matrix Q musté negative definite matrix and the adaptation
mechanism for estimating the speed will be redimyedancellation of the #'term of the equation (9).

The estimate of the speed is done by the followamg

~

w:k/l.j(eisafrlg‘eisﬁfra)dt 9)

To improve the speed of dynamic observation, prejosise Pl instead of a pure integrator:

W=k p-leisa $rp~ eisBFra) * kil(eisg $rp~ eisp Frgldt (10)

4. Simulation results
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The direct torque control applied to an asynchrenmachine is simulated under the Matlab/
Simulink environment. The simulation is performatdier the following conditions:

The hysteresis band of the torque comparator ishig case, fixed at £ 0.1Nm and that of the
comparator of the flux at = 0.001 wb., and refeespg; = 2.4 Wb,Where on the right side neural
DTC with kubota observer and the left side clad<ideC.

Tem(N.m)

time (s)

a)Classical DTC control

torque tem(N.m)

time(s)

b)DTC with neural hysteresis and kubota olese

Fig. 6 Torque responses
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Fig. 7 Speed responses
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Fig. 8 THD value of stator current
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Fig. 10 Estimation the flux by Kubota observer.

Table. 2
Comparative study between classical DTC and DT@ wéural hysteresis and kubota observer

Minimizationsripples of Minimizations ripples las
the torque of the flux THD (%)
Classical DTC Exist Exist 27.77
DTC with neural hysteresis
and kubota observer Few Few 12.28

This table shows that the simulation results usantjficial intelligence techniques (neural
hysteresis) show that the tracking of the set peiperfect. We note that the ripple of electroneign
torque and stator flux reduces perfectly compareadnventional DTC without neural hysteresis
comparatolit is more apparent throughe trajectory of the stator flux In addition tdaage decrease
in THD as shown in the table above , We were ablednclude that the DTC control by neural
hysteresis showed good performance than the cd$3icC control.

Simulation results show that using the observeimigortant in the control of the machine, the
estimation error as zero in the steady state nidjer advantage for Kubota observation technigge it
insensitivity to the machine settings.

5. Conclusion

In this paper, we mainly presented the estimatibthe rotor flux by the Kubota adaptive state
observer, then we evaluated the estimation errothef flux, we also devoted to improve the
performances of the direct control of the torquehef asynchronous two-level UPS powered machine
based on artificial intelligence techniques by aébysteresis. In order to improve the performaoice
the DTC (torque ripple reductions, flux, and theO'Malue of the stator current), simulation tests of
the control by variation and inversely of the ldadque, were presented. , the results obtained show
that this strategy proposed with the techniquab®furtificial intelligence is very powerful.
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