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Abstract. This paper deals with a variable speed device ¢olyme electrical energy on the power network,
based on a doubly fed induction generator (DFIG)js Thachine is intended to equip nacelles of wirBibes.
First, a mathematical model of the machine writteran appropriate d-q reference frame is estahdigioe
investigate simulations. In order to control thevpo flowing between the stator of the DFIG and plosver
network, a control law is synthesized by using tymes of controllers: Proportional-Integral (PIntwller and
Neural Networks (NN) based controller. Their respwecperformances are compared by simulation imseof
power reference tracking and robustness againstimaparameters variations.
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1. Introduction

During the last decade, the concept of the variapked wind turbine (VSWT) equipped with a
doubly fed induction generator (DFIG) has receivadreasing attention due to its noticeable
advantages over other wind turbine concepts [1,I2]the DFIG concept, the stator is usually
connected to the three-phase grid directly; therristalso connected to the grid but via a tramséor
and two back-to-back pulse width modulation (PWN) ér space vector modulation (SVM) [4]
inverters (Fig.1).

This arrangement provides flexibility of operatiom subsynchronous and supersynchronous
speeds in both generating and motoring modes (%3fround the synchronous speed). The power
inverter needs to handle a fraction (25-30 %) efttital power to achieve full control of the genera
the fraction depending on the permissible sub amkrsynchronous speed range. Therefore, it is
possible to use a high-frequency switching PWM eoter to achieve high performance, such as fast

dynamic response, low harmonic distortion and lifficiency without cost penalty.
The control of DFIG wind turbine systems is traafitlly based on either stator flux oriented control

(FOCQC) [5] or stator voltage oriented control (VO[B), These techniques decouple the rotor current
into active and reactive power components; comglbf the active and reactive power is achieved
indirectly by controlling the input currents. Sonmeestigations using PI controllers by using FOC
that generates reference currents from active eactive power errors to the inverter or a cascdde P
controllers that generate a rotor voltage whichlbbesn presented by [7, 8].
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Therefore, the conventional PI controllers, becaafstheir simple structures, are still the most
commonly used control techniques in power systasigan be seen in the control of the wind turbines
equipped with DFIGs [6, 7, 8 and 9]. Unfortunatelyning the Pl controller is tedious and it migkt b
difficult to tune the PI gains properly due to thenlinearity and the high complexity of the system.
Another main drawback of this controller is that performance depends greatly on accurate machine
parameters pertaining to the resistances (by warmir) and inductances (by saturation).

The Artificial neural networks (ANNs) have been y#o to be universal approximators of non-
linear dynamic systemsheir learning to examples leads to robust generalization capabilities by
using an appropriate multilayer neural network [1@] our study we learning the ANN to the PI
controllers to design the NN controllers witch exd the all Pl controllers used in the regulatibn o
DFIG.

2. Modeling of the DFIG

In the rotating field reference frame of Park, thedel of the DFIG is given by the following
equations:
Equations of stator voltage components:

d
Vds =R s‘I ds + a (pds - ws'(pqs (1)

B d
Vqs =R s'l gs + a(pqs + ws'(pds

Equations of rotor voltage components:

d
Vdr = Rr'ldr +7(pdr _(0‘)5 _wr)'(pqr

dt (2)

d
Vqr = Rr'lqr +a(pqr +((‘Os _(‘Or)'(pdr

Equations of stator flux components:

Qs =L glys +L 1y (3)
(pqS:LS.IqS+Lm'Iq|'

Equations of rotor flux components

{(pdr :Lr'ldr+Lm'|ds (4)

Equation of DFIG electromagnetic torque:

3 L
Tem = _E ,p.L':‘.((pdslq, - (quldr) (5)

Generator active and reactive powers at the staderare:
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e (6)
'(Vqslds _Vdslqs)

3. Field oriented control (FOC) strategy

To achieve a stator active and reactive power vamotrol, we choose a (d-q) reference frame
synchronized with the stator flux. By setting thater flux vector aligned with d-axis, we have:
¢4 = ¢, and ¢, =0.

Assuming that the resistance of the stator windRgs neglected (that's the case for medium and

high power machines used in wind energy conversyastems [7, 11]), the voltage equations and flux
equations of the stator windings can be simplifredtudy state as:

Vg =0 (7)
Vqs = Vs = ws'(ps
{(ps :LSIdS+LmIdr (8)
0=LJu+L g
From (8), the equations linking the stator curreatthe rotor currents are deduced below:
— (ps I—m
I ds = 7 - dr
Lo L, (9)
LI’TI
lqs = _T.Iqr

Taking into consideration the chosen referencedtahe active and reactive powers in (6) can be
written as follows:

P=2V,l,
2 (10)
Qs = gvsl ds

Replacing (9) in (10), the active and reactive povat the stator side can expressed by:

F>s=—§.ﬁ.vs.|qr
3 V. L
=2V, —s——m |
=5 S[Ls.ws L, ‘”J
The electromagnetic torque is as follows:
(12)

3 L
T, =——p—"q.l
em 2pLS O, qr

Due to the constant stator voltage, the statoveeid reactive powers are controlled by means
of I, andly respectively.

We could express the rotor voltages accordingegadkor currents, thus we obtain:
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L 2
V, =R, —g.oos.[L, —L—mj.lq,

(13)
V,

S

L2 L.
Ve =R+ g.oos{Lr —L—J.Idr +0 L

S S

By using the simplified model of the DFIG and byaddishing the FOC stredésyy, weecaamessitblish
the global block diagram of the controlled systé&iig(2).

Transfo

PI
e PL _G E‘
22 4 I— " Inverter
o v
a)SLS

Fig. 2:Global block diagram of indirect field oriented t¢ar techniqige

4. Neural controller design

The dimension of the neural network making it polesto obtain a better result is impossible to
fix. It was established that a neural network waitty one hidden layer can make the approximation of
any function, some parameters of ANNs cannot bergebted from an analytical analysis of the
process under investigation. This is the caseehtimber of hidden layers and the number of neurons
belonging to them. By taking all these conceptsdnsideration, we can note that it is especialgy th
experiment and the number of tests which diredhube search of the numbeobhaatwoasaaddmmore
exactly on optimal architecture by a given problem.

The optimal architecture of Multilayer PerceptrddLf) in our case is to take one hidden layer
containing three neurons for designing the numkdeatrollers, which replacetiiecféom AP icoomtodier
of powers and currents presented in the Fig. ?rder to maintain high dynamic performances even
when detuning occurs. At first, we are learning MieP to the PI controlletbbyppeesatitiggl 556001
examples to the network with a maximal error 6f°Léhe number of epochs count maximuri @th
an iteration step of five. Then, the MLP must kaned in order to adjust and to find the adequate
weights. The backpropagation algorithm narhedenberg—Marquardi_M) [12, 13 and 14] is used to
train the networks.

This method, which is an approximation of Newtonisthod, has been shown to be one of the
fastest algorithms for training moderate size MBRd ensures best convergenevenadarasranmmimum
of the quadratic error; it's much more efficienathother techniques, such as conjugate gradient
algorithm and variable learning rate algorithm, ttee network with a few hundred weigtS8]13].
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5. Simulation results

In this part, simulations are investigated with.a MW generator connected to a 398V/50 Hz grid
(Appendix), by using the MATLAB/SIMULINK software.

So as to really evaluate the performances of twectintrollers, we test and compare the responses
of the tow last ones in tow cases:

In the first case, we initial simulation with vau® active and reactive power steps in nhominal
regime of DFIG; this last one is driven at supectyonous speed2, =1700rmp(or g=-0.13). The
active power step is changed from -0.6 MW to -1.%/Netween the instants t=0.5s and t=1s and
again from -1.2 MW to -0.3 MW between t=1s and Fslwhile the reactive power step is changed
from -0.3 MVAR to 0.3 MVAR at the instant t=0.73.he negative sign “-“ refers to the generation of
active power and to the absorption of reactive phwiéhe active power, reactive power, stator curren
and rotor current responses are show in Fig. 8P| controller and in Fig. 4 for the NN conteoll

In the second case, we increase the rotor resestahcl00% (case of warming-up of rotor
windings) and decrease all inductances of 10% (o&seductances saturation); we keep the same
conditions as the precedent case such as the spemd and powers steps. Fig. 5 and 6 show the
simulation results.

The results steps responses in Fig. 3 and 4 shaiviité NN controller has a faster time response
than the PI controller. The PI controller is sewsitto the changes in the parameters of the DFIG
especially to the inductance variations. The Fign8 6 prove the robustness of the NN controlkés; t
does not depend on the parameter variations of DdfiG shows robust performance than the PI
controller.

We notice that for the NN controller, the respotisee is almost degraded but the regulator
nevertheless arrive to keep the powers responseiseto references, and ensure a stable current
delivered from the DFIG stator to the public nethyarontrary to the Pl controller.
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6. Conclusion

In this paper we introduced the mathematical manfethe doubly fed induction generator
dedicated for the variable speed wind turbineshitn to controlling the stator active and reactive
power of the DFIG connected to the public netwevk, have applied the stator field oriented control
strategy. This last one is based on two types ofrotbers in our study: the first one is the Pl totler
and the second one is the NN based controller.

Simulation results show that the NN controller gitbe best time response, and it's more robust
against parameter variations of the DFIG than thedntroller. The big criterion to engineers and
researches is to choose between both controllerdynthe requirements of the application in terms o
high performances in ideal conditions and robustriieghe case of parameter variations, involved in
the field of the doubly fed induction generatordzhgind energy conversion systems.
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Tablel. Wind turbine parameters

Blade radiusR 35.25m
Number of blades 3

Gearbox ratio 90

Moment of inertia,) 1000 Kg.M
Viscous friction coefficientf, 0.0024 N.m3
Cut-in wind speed 4 m/s
Cut-out wind speed 25 m/s
Nominal wind speed; 16 m/s

Tablell. Doublyfed induction generator parameters

Rated powerP, 1.5 MW
Stator rated voltag&/s 398/690 V
Rated current,, 1900 A
Stator rated frequency, 50 Hz
Stator inductance,s 0.0137H
Rotor inductancd,, 0.0136 H
Mutual inductancel,., 0.0135H
Stator inductancez, 0.0120
Rotor inductancel 0.0210
Number of pair of poleq 2
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