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Abstract. This paper deals with a variable speed device to produce electrical energy on the power network, 
based on a doubly fed induction generator (DFIG). This machine is intended to equip nacelles of wind turbines. 
First, a mathematical model of the machine written in an appropriate d-q reference frame is established to 
investigate simulations. In order to control the power flowing between the stator of the DFIG and the power 
network, a control law is synthesized by using two types of controllers: Proportional-Integral (PI) controller and 
Neural Networks (NN) based controller. Their respective performances are compared by simulation in terms of 
power reference tracking and robustness against machine parameters variations. 

Keywords: Wind Energy, DFIG, PI Controller, Artificial Neural Networks. 

 

1. Introduction 
During the last decade, the concept of the variable speed wind turbine (VSWT) equipped with a 

doubly fed induction generator (DFIG) has received increasing attention due to its noticeable 
advantages over other wind turbine concepts [1, 2]. In the DFIG concept, the stator is usually 
connected to the three-phase grid directly; the rotor is also connected to the grid but via a transformer 
and two back-to-back pulse width modulation (PWM) [3] or space vector modulation (SVM) [4] 
inverters (Fig.1).  
 

This arrangement provides flexibility of operation in subsynchronous and supersynchronous 
speeds in both generating and motoring modes (± 30 % around the synchronous speed). The power 
inverter needs to handle a fraction (25-30 %) of the total power to achieve full control of the generator, 
the fraction depending on the permissible sub and supersynchronous speed range. Therefore, it is 
possible to use a high-frequency switching PWM converter to achieve high performance, such as fast 
dynamic response, low harmonic distortion and high efficiency without cost penalty.  
The control of DFIG wind turbine systems is traditionally based on either stator flux oriented control 
(FOC) [5] or stator voltage oriented control (VOC) [6], These techniques decouple the rotor current 
into active and reactive power components; controlling of the active and reactive power is achieved 
indirectly by controlling the input currents. Some investigations using PI controllers by using FOC 
that generates reference currents from active and reactive power errors to the inverter or a cascade PI 
controllers that generate a rotor voltage which has been presented by [7, 8]. 
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Therefore, the conventional PI controllers, because of their simple structures, are still the most 
commonly used control techniques in power systems, as can be seen in the control of the wind turbines 
equipped with DFIGs [6, 7, 8 and 9]. Unfortunately, tuning the PI controller is tedious and it might be 
difficult to tune the PI gains properly due to the nonlinearity and the high complexity of the system. 
Another main drawback of this controller is that its performance depends greatly on accurate machine 
parameters pertaining to the resistances (by warming-up) and inductances (by saturation). 

The Artificial neural networks (ANNs) have been proven to be universal approximators of non-
linear dynamic systems, their learning to examples leads to robust generalization capabilities by 
using an appropriate multilayer neural network [10]. In our study we learning the ANN to the PI 
controllers to design the NN controllers witch replace the all PI controllers used in the regulation of 
DFIG. 

 

2. Modeling of the DFIG 
In the rotating field reference frame of Park, the model of the DFIG is given by the following 

equations: 
Equations of stator voltage components: 










φω+φ+=

φω−φ+=

dssqsqssqs

qssdsdssds

.
dt

d
I.RV

.
dt

d
I.RV

                                                                                   (1) 

Equations of rotor voltage components: 



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Equations of stator flux components: 


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+=φ
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                                        (3)                                                                                                              

Equations of rotor flux components 

 



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+=φ
+=φ

qsmqrrqr

dsmdrrdr
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    (4)                                               

Equation of DFIG electromagnetic torque: 

( )drqsqrds
r

m
em I.I..

L
L

.p.
2
3

T φ−φ−=        (5)                   

Generator active and reactive powers at the stator side are:  
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   (6)  

3. Field oriented control (FOC) strategy 
To achieve a stator active and reactive power vector control, we choose a (d-q) reference frame 

synchronized with the stator flux. By setting the stator flux vector aligned with d-axis, we have:
.0and qssds =φφ=φ  

Assuming that the resistance of the stator windings Rs is neglected (that's the case for medium and 
high power machines used in wind energy conversion systems [7, 11]), the voltage equations and flux 
equations of the stator windings can be simplified in study state as:
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From (8), the equations linking the stator currents to the rotor currents are deduced below: 
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  (9)  

Taking into consideration the chosen reference frame, the active and reactive powers in (6) can be 
written as follows: 


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    (10) 

Replacing (9) in (10), the active and reactive powers at the stator side can expressed by: 
 
 
            (11) 
 
 

 
 

 

The electromagnetic torque is as follows: 
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Due to the constant stator voltage, the stator active and reactive powers are controlled by means 
of Iqr and Idr respectively. 

We could express the rotor voltages according to the rotor currents, thus we obtain:                   





















−

ω
=

−=

dr
s

m

ss

s
ss

qrs
s

m
s

I.
L
L

.L
V

.V.
2
3

Q

I.V.
L

L
.

2

3
P



Djeridi Y. et al., Journal of Advanced Research in Science and Technology, 2015, 2(1), 173-181. 

176 

©
 2

0
1

5
 J

A
R

S
T

. 
A

ll
 r

ig
h

ts
re

se
rv

e
d

 













+









−ω+=











−ω−=

s

sm
dr

s

2
m

rsqrrqr

qr
s

2
m

rsdrrdr

L
V.L

.gI.
L

L
L..gI.RV

I.
L

L
L..gI.RV

    (13) 

 

By using the simplified model of the DFIG and by establishing the FOC strategy, we can establish 
the global block diagram of the controlled system (Fig. 2). 

 

 

Fig. 2: Global block diagram of indirect field oriented control technique 

4. Neural controller design 
The dimension of the neural network making it possible to obtain a better result is impossible to 

fix. It was established that a neural network with only one hidden layer can make the approximation of 
any function, some parameters of ANNs cannot be determined from an analytical analysis of the 
process under investigation. This is the case of the number of hidden layers and the number of neurons 
belonging to them. By taking all these concepts in consideration, we can note that it is especially the 
experiment and the number of tests which direct us in the search of the number of neurons, and more 
exactly on optimal architecture by a given problem.  

 
The optimal architecture of Multilayer Perceptron (MLP) in our case is to take one hidden layer 

containing three neurons for designing the numerical controllers, which replace the four PI controllers 
of powers and currents presented in the Fig. 2, in order to maintain high dynamic performances even 
when detuning occurs. At first, we are learning the MLP to the PI controller by presenting 15001 
examples to the network with a maximal error of 10-20, the number of epochs count maximum 103 with 
an iteration step of five. Then, the MLP must be trained in order to adjust and to find the adequate 
weights. The backpropagation algorithm named Levenberg–Marquardt (LM) [12, 13 and 14] is used to 
train the networks. 

This method, which is an approximation of Newton’s method, has been shown to be one of the 
fastest algorithms for training moderate size MLPs and ensures best convergence towards a minimum 
of the quadratic error; it’s much more efficient than other techniques, such as conjugate gradient 
algorithm and variable learning rate algorithm, for the network with a few hundred weights [13].  
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5. Simulation results 
In this part, simulations are investigated with a 1.5 MW generator connected to a 398V/50 Hz grid 

(Appendix), by using the MATLAB/SIMULINK software. 
So as to really evaluate the performances of the tow controllers, we test and compare the responses 

of the tow last ones in tow cases: 
In the first case, we initial simulation with various active and reactive power steps in nominal 

regime of DFIG; this last one is driven at supersynchronous speed rmp1700t =Ω (or g=-0.13). The 
active power step is changed from -0.6 MW to -1.2 MW between the instants t=0.5s and t=1s and 
again from -1.2 MW to -0.3 MW between t=1s and t=1.5s; while the reactive power step is changed 
from -0.3 MVAR to 0.3 MVAR at the instant t=0.7s. (The negative sign “-“ refers to the generation of 
active power and to the absorption of reactive power). The active power, reactive power, stator current 
and rotor current responses are show in Fig. 3 for the PI controller and in Fig. 4 for the NN controller.    

In the second case, we increase the rotor resistance of 100% (case of warming-up of rotor 
windings) and decrease all inductances of 10% (case of inductances saturation); we keep the same 
conditions as the precedent case such as the rotor speed and powers steps. Fig. 5 and 6 show the 
simulation results. 

The results steps responses in Fig. 3 and 4 show that the NN controller has a faster time response 
than the PI controller. The PI controller is sensitive to the changes in the parameters of the DFIG 
especially to the inductance variations. The Fig. 5 and 6 prove the robustness of the NN controller; this 
does not depend on the parameter variations of DFIG and shows robust performance than the PI 
controller. 

We notice that for the NN controller, the response time is almost degraded but the regulator 
nevertheless arrive to keep the powers responses to their references, and ensure a stable current 
delivered from the DFIG stator to the public network, contrary to the PI controller.     
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(d) Rotor current response 

(a) Pmes response for Pref step 
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Fig. 3: PI controller responses in 
nominal regime of DFIG  

(a): Pmes response for Pref step 

(b): Qmes response for Qref step 

(c): Stator current response 

(d): Rotor current response 

Fig. 4: NN controller responses in nominal 
regime of DFIG 
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(c) Stator current response 

Fig. 5: PI controller responses against 
parameter variations 
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6. Conclusion 
In this paper we introduced the mathematical model of the doubly fed induction generator 

dedicated for the variable speed wind turbines; with aim to controlling the stator active and reactive 
power of the DFIG connected to the public network, we have applied the stator field oriented control 
strategy. This last one is based on two types of controllers in our study: the first one is the PI controller 
and the second one is the NN based controller.  

Simulation results show that the NN controller gives the best time response, and it’s more robust 
against parameter variations of the DFIG than the PI controller. The big criterion to engineers and 
researches is to choose between both controllers mainly the requirements of the application in terms of 
high performances in ideal conditions and robustness in the case of parameter variations, involved in 
the field of the doubly fed induction generator based wind energy conversion systems. 
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Table I. Wind turbine parameters 

 

 

 

 

 

 

 

Table II. Doubly fed induction generator parameters 

 

 

 

 

 

 

 

 

 

Blade radius, R 35.25 m 

Number of blades 3 

Gearbox ratio, G 90 

Moment of inertia, J 1000 Kg.m2 

Viscous friction coefficient, fr 0.0024 N.m.s-1 

Cut-in wind speed 4 m/s 

Cut-out wind speed 25 m/s 

Nominal wind speed, v 16 m/s 

Rated power, Pn 1.5 MW 
Stator rated voltage, Vs  
Rated current, In  

398/690 V 
1900 A 

Stator rated frequency, f 50 Hz 

Stator inductance, Ls 0.0137 H 

Rotor inductance, Lr 0.0136 H 

Mutual inductance, Lm 0.0135 H 

Stator inductance, Rs 0.012 Ω 

Rotor inductance, Rr 0.021 Ω 

Number of pair of poles, p 2 


