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ABSTRACT

In this paper, the theory of fractional order two-temperature generalized
thermoelasticity is used to study the propagation of magneto-thermoelastic
disturbances in a homogeneous isotropic perfectly conducting half-space
medium due hydrostatic initial stress. Normal mode analysis technique and
the method of displacement potentials are used to obtain the analytical
solutions of the studied �eld varables. Arbitrary application is chosen to
enable us to get the complete solution. The e¤ect of fractional parameter
and hydrostatic initial stress on the variations of the studied �eld quantities
has been investigated graphically.

c
2017 LESI. All rights reserved.

1. Introduction

Several investigations have been made by many authors using the fractional calculus
to study the physical processes. Ezzat and Karmany [1] applied the new Taylor series
expansion of time-fractional order which was developed in [2] based on the classical Fou-
rier heat conduction law to establish fractional order heat conduction law in magneto-
thermoelasticity involving two temperatures. They studied a one-dimensional problem for
a thermoelastic medium of prefect conductivity permeated by an initial magnetic �eld
using the above fractional order generalized thermoelasticity model and investigated the
e¤ects of the fractional order parameter on all the studied physical quantities in the same
work.
The e¤ects of fractional parameter on the plane waves of generalized magneto - ther-

moelastic di¤usion with reference temperature-dependent elastic medium by Othman et
al. [3]. Abbas [4] investigated a problem on functional graded material within the fra-
mework of fractional generalized thermoelasticity.Youssef [5] studied a one-dimensional
problem in the context of the fractional order generalized thermoelasticity. Povstenko in-
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troduced a new fractional heat conduction equation and studied associated thermal stress
in [6]. Povstenko [7] also investigated the fractional radial di¤usion in an in�nite medium
with cylindrical cavity. Bachher et al. [8, 9] studied some one-dimensional thermoelastic
problems for in�nite porous material with heat sources in the context of the fractional
order generalized thermoelasticity theorey.
In the present work, the theory of fractional order two-temperature generalized ther-

moelasticity is applied to study the propagation of magneto-thermoelastic disturbances in
a homogeneous isotropic perfectly conducting half-space medium due hydrostatic initial
stress. Normal mode analysis [10-12] technique and the method of displacement poten-
tials [3] are used to obtain the analytical solutions of the studied �eld varables. Arbitrary
application is chosen to enable us to get the complete solution. The e¤ect of fractional
parameter and hydrostatic initial stress on the variations of the studied �eld quantities
has been investigated graphically.

2. Formulation of the problem

We shall consider a homogeneous isotropic perfectly conducting thermoelastic semi-
in�nite medium (x � 0) with hydrostatic initial stress in two-dimensional space under
constant primary magnetic �eld ~H0 = (0; 0; H0) acts parallel to the boundary plane (ta-
ken as the direction of the z-axis). This produces an induced magnetic �eld ~h = (0; 0; h0)
and induced electric �eld ~E = (E1; E2; 0) which satisfy the linearized equations of elec-
tromagnetism and are valid for slowly moving media : [3] :

~J = ~r� ~h� "0
_~E (1)

~r� ~E = ��0
_~h (2)

~E = ��0
�
_~u� ~H

�
(3)

~r � ~h = 0; ~r � ~E = 0 (4)

where ~H = ~H0 + ~h;is the total magnetic �eld vector, ~J is the electric current density,
"0 is the electric permeability and �0 is the magnetic permeability.
The above equations are supplemented by the governing equations of linear, homoge-

nous and isotropic fractional order generalized magneto-thermoelasticity with hydrostatic
initial stress (Lord and Shulman [13], Montanaro [14], Youssef [15], and Ezzat and Kara-
many [1]) as follows :

�ij = �p (�ij + !ij) + 2�eij + (�ekk � 
�) �ij (5)

eij =
1

2
(ui;j + uj;i) (6)
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!ij =
1

2
(uj;i � ui;j) (7)

�ij;j + �0

�
~J � ~H

�
i
= ��ui (8)

kr2� =
@

@t

�
1 +

��0
�!

@�

@t�

�
(�CE� + 
T0e) ; 0 < � � 1 (9)

where �ij are the components of the stress tensor, eij are the components of strain
tensor, ui are the components of the displacement vector

�!u , �, � are the counterparts
of Lame�s constants, 
 = (3�+ 2�)�T is a material constant characteristic of the theory,
�T is the coe¢ cient of linear thermal expansion, �ij is Kronecker delta, p is the initial
pressure, !ij are the components of the small rotation tensor, � is the mass density, k(> 0)
is the thermal conductivity, CE is the speci�c heat at constant strain, � = T �T0 is small
temperature increment, T is the temperature increase of the medium over the uniform
reference temperature T0 assumed to be such that j�=T0j << 1, e = ekk is the cubical
dilatation and a(> 0) is the temperature discrepancy. In the above equations, the comma
notation is used for derivatives with respect to space variables and superimposed dot
represents time di¤erentiation.
For two-dimensional deformation in the xy-plane, all the considered functions will de-

pend on space variables x; y and time variable t and thus the displacement vector ~u will
have the components :

u = ux = u(x; y; t); v = uy = v(x; y; t); w = uz = 0: (10)

Eqs. (1)-(9) thus simplify to :

�xx = (�+ 2�)u;x + � v;y � 
� � p (11)

�yy = �u;x + (�+ 2�) v;y � 
� � p (12)

�xy =
�
�� p

2

�
v;x +

�
�+

p

2

�
u;y (13)

�yx =
�
�+

p

2

�
v;x +

�
�� p

2

�
u;y (14)

�
�+ 2�+ �0H

2
0

�
u;xx+

�
�+ �+

p

2
+ �0H

2
0

�
v;xy+

�
�� p

2

�
u;yy�
�;x = �

�
1 + "0�

2
0H

2
0

�
�u

(15)
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�
�+ 2�+ �0H

2
0

�
v;yy+

�
�+ �+

p

2
+ �0H

2
0

�
u;xy+

�
�� p

2

�
v;xx�
�;y = �

�
1 + "0�

2
0H

2
0

�
�v

(16)

For the purpose of numerical evaluation, we will use the following non-dimensional
variables

(x0; y0; u0; v0) = c1�(x; y; u; v); (t
0; � 00) = c21�(t; � 0);

�0ij =
�ij
�c21
; �0 = 


�c21
�; p0 = p

�c21
; � = �CE

k

(17)

Using the above non-dimensional variables, Eqs. (11)-(16), (8) and (9) take the following
forms (omitting the primes for convenience) :

�xx = u;x +
�
1� 2�2

�
v;y � � � p (18)

�yy = v;y +
�
1� 2�2

�
u;x � � � p (19)

�xy =
�
�2 � p

2

�
v;x +

�
�2 +

p

2

�
u;y (20)

�yx =
�
�2 +

p

2

�
v;x +

�
�2 � p

2

�
u;y (21)

�
1 + c23

�
u;xx +

�
1� �2 +

p

2
+ c23

�
v;xy +

�
�2 � p

2

�
u;yy �

�
1� �0r2

�
';x =M �u (22)

�
1 + c23

�
v;yy +

�
1� �2 +

p

2
+ c23

�
u;xy +

�
�2 � p

2

�
v;xx �

�
1� �0r2

�
';y =M�v (23)

r2� =
@

@t

�
1 +

��0
�!

@�

@t�

�
(� + "e) (24)

e = (u;x + v;y) (25)

where �2 = �
�+2�

; " = 
2T0
�CE(�+2�)

; c23 =
�0H

2
0

�+2�
; M = (1 + "0�

2
0H

2
0 ) :

We de�ne the displacement potentials and which relate to displacement components u
and � as

u = #;x +  ;y; v = #;y �  ;x (26)

so that

e = r2# (27)
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Using Eq. (25) and (26) in Eqs. (21)-(23), we obtain :��
1 + c23

�
r2 �M

@2

@t2

�
#� � = 0; (28)

��
�2 � p

2

�
r2 �M

@2

@t2

�
 = 0; (29)

�
r2 � @

@t

�
1 +

��0
�!

@�

@t�

��
� � "

@

@t

�
1 +

��0
�!

@�

@t�

�
r2# = 0: (30)

3. Normal mode analysis

The solution of the physical quantities can be decomposed in terms of normal modes
in the following form :

[#;  ; �] (x:y:t) = [#�;  �; ��] (x)e!t+imy; (31)

where #�(x) etc. are the amplitude of the function #(x; y; t) etc., i is the imaginary unit,
! is the angular frequency and m is the wave number in the y-direction.
Introducing (30) in Eqs. (27)-(29), we obtain��

1 + c23
� �
D2 �m2

�
�M!2

�
#� � �� = 0 (32)

h�
�2 � p

2

� �
D2 �m2

�
�M!2

i
 � = 0 (33)

��
D2 �m2

�
� !0

�
�� � "!0

�
D2 �m2

�
#� = 0 (34)

where

!0 = !

 
1 +

��0
�!
e�!tt��

1X
n=1

(!t)n

�(n+ 1� �)

!
(35)

Eliminating #�(x) and ��(x) from Eqs. (31) and (33), we get the following fourth-order
ordinary di¤erential equation satis�ed by #�(x) and ��(x):�

D4 � AD2 +B
�
f#�(x); ��(x)g = 0

where A = 2m2 + g1; B = m4 + g1m
2 + g2;

g1 = [!0 (1 + c
2
3) +M!2 + "!0] [(1 + c23) + "�0!0]

�1
; g2 =M!0!

2[(1 + c23) + "�0!0]
�1
:

Eq. (35) can be factorized as�
D2 � k21

� �
D2 � k22

�
f#�(x); ��(x)g = 0 (36)
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where kj [Re (kj) > 0; j = 1; 2]are the roots of the following characteristic equation.

k4 � g1k
2 + g2 = 0 (37)

given by k21; k
2
2 =

g1�
p
g21�4g2
2

:

The general solution for #�(x),  �(x) and ��(x) which are bounded as x! +1 can be
written from Eqs. (32) and (36) as

#�(x) =
2X
j=1

Rje
�kjx (38)

 �(x) = R3e
�k3x (39)

��(x) =

2X
j=1

�jRje
�kjx (40)

where Rj (j = 1; 2; 3) are some parameters depending on m, !

and k3 =
q
m2 +M!2

�
�2 � p

2

��1
(> 0), �j =

�
(1 + c23)

�
k2j �m2

�
�M!2

�
; j = 1; 2:

Using Eqs. (30), (38) and (39) in Eqs (25) and (26), the solutions for the strain e(x; y; t)
and the displacements components u(x; y; t) and v(x; y; t)can now be obtained as

e(x; y; t) = e!t+imy
2X
j=1

�
k2j �m2

�
Rje

�kjx (41)

u(x; y; t) = e!t+imy

"
imR3e

�k3x �
2X
j=1

kjRje
�kjx

#
(42)

v(x; y; t) = e!t+imy

"
k3R3e

�k3x +

2X
j=1

imRje
�kjx

#
(43)

Substituting from Eqs. (40), (42) and (43) into the Eqs. (17)-(20), we get the following
expressions for the stress components

�xx(x; y; t) = �p+ e!t+imy
3X
j=1

�2jRje
�kjx (44)

�yy(x; y; t) = �p+ e!t+imy
3X
j=1

�3jRje
�kjx (45)
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�xy(x; y; t) = e!t+imy
3X
j=1

�4jRje
�kjx (46)

�yx(x; y; t) = e!t+imy

"
2X
j=1

�4jRje
�kjx + �44R3e

�k3x

#
(47)

where
�2j =

��
k2j �m2

�
+ 2m2�2 � 1

�
; �23 = �2im�2k3;

�3j =
��
k2j �m2

�
� 2k2j�2 � 1

�
; �33 = 2im�

2k3;

�4j = �2im�2kj;
�4j+2 = (�1)j�1 p2 (k

2
3 �m2)� �2 (k23 +m2) ; j = 1; 2:

4. Application

We consider the problem of a fractional order magneto-thermoelastic semi-in�nite me-
dium 
 with hydrostatic initial stress and two-temperature de�ned as follows :


 = f(x; y; z) : 0 � x <1; �1 < y <1; �1 < z <1g :

We assume the following initial conditions :

u = v = � = ' = _u = _v = _� = _' = 0 at t = 0: (48)

We now apply the following boundary conditions for the present problem :
(i) Thermal boundary condition : the surface x = 0 is assumed to be thermally insulated

i.e.,

@�

@x
= 0; on x = 0 (49)

(ii) Mechanical boundary condition : the boundary conditions for a load p0 applied at
the plane surface x = 0 of the medium 
 in normal direction can be mathematically
written as

�xx(0; y; t) = �p0; �xy(0; y; t) = 0 (50)

Substituting the expressions of the variables considered into the above boundary condi-
tions, we obtain the following equations satis�ed by the parameters Rj (j = 1; 2; 3):

g11R1 + g12R2 = 0

�21R1 + �22R2 + �23R3 = p�

�41R1 + �42R2 + �43R3 = 0
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where g1j = (�� kj) �j; p
� = (p� p0) e

�!t�imy:
Solving Eqs. (51)-(53), we get the parameters Rj (j = 1; 2; 3) with the following forms :

R1 =
�p�g12�43

�
; R2 =

p�g11�43
�

; R3 =
p� (g12�41 � g11�42)

�
(51)

where � = g11 (�22�43 � �23�42)� g12 (�21�43 � �23�41) :

5. Special cases of thermoelasticity theory

5.1. Classical dynamical theory of thermoelasticity (CD theory)
Setting � = 1 and � 0 = 0, the equations of the CD-theory can be obtained.

5.2. Lord-Shulman theory of thermoelasticity (L-S model)
Setting � = 1 where � 0 > 0, the equations of the L-S theory can be obtained.

5.3. Fractional order theory of generalized thermoelasticity
In this case, 0 < � < 1 with � 0 > 0.

6. Particular cases

6.1. Fractional order generalized thermoelastic medium with hydrostatic ini-
tial stress ;

Substitutin H0 = 0 in Eqs. (17)-(24), we obtain the corresponding expressions of all the
physical quantities.

6.2. Fractional order generalized magneto-thermoelasticity without hydrosta-
tic initial stress ;

Setting p = 0 in Eqs. (17)-(24), we obtain the corresponding expressions of all the
physical quantities.

6.3. Fractional order generalized thermoelasticity without hydrostatic initial
stress and magnetic �eld ;

Substituting H0 = 0 and p = 0 in Eqs. (17)-(24) we can obtain the corresponding
expressions of the temperature, the displacements and the stress distributions.

7. Numerical results

In order to illustrate the e¤ects of the fractional parameter, two-temperature parameter,
initial stress on the �eld variables, a numerical analysis is presented. Material chosen for
this purpose is magnesium crystal, the physical data for which is given in Table 1 [9].
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Table 1 �Physical data for magnesium crystal.

� = 1:74� 103 kgm�3 � = 3:278� 1010Nm�2 � = 2:17� 1010Nm�2

k = 1:7� 102Wm�1K�1 CE = 1:04� 102Jkg�1deg�1 "0 =
10�9

36�
Fm�1

H0 =
107

4�
Am�1 T0 = 298K � 0 = 0:02

m = 4:0 p0 = 1 � = 0


 = 2:68� 106Nm�2deg�1 �0 =
4�
107
Hm�1 ! = 3:0

Using the above data, the value of the series (34) has been computed and on a personal
computer with the help of Mathematica software and the values are noted in Table 2 :

Table 2 �Value of the series (34).

� 0.1 0.5 1.0
!0 5.59037 4.09827 3.18

Considering the above physical data, the real parts of the non-dimensional physical
variables have been computed and the obtained numerical values are presented in the form
of graphs at di¤erent positions of the distancecx at t = 0:3 and y = 0:0. We have plotted
two sets of graphs. The �rst sets of graphs (Figs. 1-6) show the e¤ect of the fractional
parameter � = 0:1; 0:5; 1:0 on the distribution of the �eld variables. The variation of the
�eld variables due to hydrostatic initial stress p = 0:0; 0:2; 0:4 has been depicted in the
second set of �gures (Figs. 7�12). All the �gures in second set are shown for � = 0:5.
Figs. 1 and 2 depict the variations of the temperature � and the strain �eld e at

di¤erent positions of x for three di¤erent values of � = 0:1; 0:5; 1:0 and �0 = 0:1;
p = 5:0. From this �gure, we can notice that both the �eld variables have similar behavior
qualitatively having some di¤erence in magnitudes only. However, for large value of �,
magnitudes of both the temperature and strain �elds are larger as compared to the case
when � = 0:1 which clearly indicates that the fractional parameter � has an increasing
e¤ect on � and e. When the free surface of the half-space is a¤ected by the external
load, the temperature rise velocity becomes very fast, causing the temperature gradient
to increase dramatically. As a result, temperature �elds attain their peak values near the
boundary. As the horizontal distance x increases, the temperature rise velocity and the
temperature gradient decrease, so the temperature �elds weaken to a comparatively small
value and ultimately reach to steady state for x � 3:5 (approximately). Thus, it can be
seen that the thermodynamics is a short time e¤ect.
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Fig. 1 �Temperature distribution for p = 5:0.

Fig. 2 �Distribution of the strain �eld for p = 5:0.

Fig. 3 �Horizontal displacement distribution for p = 5:0.

Fig. 3 displays the spatial variation of the horizontal displacement u with respect to
x (0:0 � x � 4:0) at � = 0:1; 0:5; 1:0; �0 = 0:1; p = 5:0. This �gure indicates that u
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starts with the positive value 0:049 (approximately) in all the three cases, then it starts
to increase and attains stationary maximum value (+ve) at x = 0:47 (approximately) for
� = 0:1. After reaching the maximum value, the displacement starts to decrease as the
distance x increases and at last becomes zero at the heat wave front. E¤ect of the fractional
parameter � is quite pertinent on the distributions of u which can be easily noticed from
the �gure. Increment in the value of � has caused decrement in the numerical value of
u within the region 0:0 � x � 0:47 and then � acts to increase the magnitudes of u in
0:47 � x � 4:0.
Distribution of the non-dimensional normal stress components �xx and �yy with spatial

coordinate x has been plotted in Fig. 4 and 5 for � = 0:1; 0:5; 1:0 and �0 = 0:1; p = 5:0.
Fig. 4 shows that in all the three cases, �xx starts with a negative value �1:0 which is
completely in agreement with the boundary conditions (50) and then it is decreasing for
0:0 � x � 3:5. The stress �xx converges to the value �5:0 for x � 3:5 which is again agrees
with our theoretical results (44) because for large value of x � 3:5, the second term of
�xx in Eq. (44) converges to zero value and hence �xx ' �5:0 for x � 3:5. The vibration
amplitude quickly rises to its maximum value near the boundary of the surface which is
called the peak de�ection. Similar behavior of the other normal stress component �yy has
been found in Fig. 5. Figs. 4 and 5 illuminates that the fractional parameter is having a
signi�cant decreasing e¤ect on the pro�le of both the normal stress distributions.
Fig. 6 represents the distribution of the non-dimensional shearing stress component �xy

vs. x for three di¤erent value of the fractional parameter � = 0:1; 0:5; 1:0 and indicates
that �xy starts with a zero value for all the three cases which agrees with the assumed
boundary condition (50). Hence the numerical results agree with our theoretical results.
The parameter � acts to decrease the values �xy of in the region 0:0 � x � 0:4 (approxi-
mately) and then increases further to reach its steady state. It can be noticed that the
maximum impact zone of � is 0:0 � x � 3:5 (approximately) and this impact dies out-
side this range. Stress �eld attains signi�cantly large values in for small value of � = 0:1
compared to � = 0:5; 1:0. This �gure also shows that �xy attains two extreme values-one
is maximum value and the other is a minimum value.

Fig. 4 �Distribution of the normal stress �xx for p = 5:0.
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Fig. 5 �Distribution of the normal stress �yy for p = 5:0.

Fig. 6 �Distribution of the shearing stress �xy for p = 5:0.

Figs. 7 and 8 has been drawn to observe the in�uence of the hydrostatic initial stress
p on the distribution of the temperature � and the strain �eld e against distance x for
� = 0:5; �0 = 0:1 (i. e., fractional order generalized magneto-thermoelasticity) and these
�gures clearly indicate that the hydrostatic initial stress has an decreasing e¤ect on both
the temperature and strain �elds within the region 0:0 � x � 3:5 (approximately). It is
also noticed that the magnitudes of both the temperature and strain �elds are maximum
for all the three cases (i.e., p = 0:0; 0:2; 0:4) at the boundary which is physically reasonable
and then converge to zero gradually for large x (� 3:5) which indicates a wave front.
Finally, all curves for both the �eld variables � and e approaches to zero for x � 3:5
(approximately) which is the location of wave front. From the mathematics view point, the
non-Fourier thermal conduction equation is a damped wave equation, where the coe¢ cient
of � represents the amount of damping. This is the di¤erence between the Fourier and
non-Fourier heat conduction. All the three curves predicting the distributions of � and e
have similar nature. The temperature distributions have non-zero values only in a bounded
region of the half-space which is physically reasonable due to characteristics of �nite wave
speeds in generalized thermoelasticity.
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Fig. 7 �Temperature distribution for � = 0:5.

Fig. 8 �Distribution of the strain �eld for � = 0:5.

Fig. 9 �Horizontal displacement distribution for � = 0:5.
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Fig. 10 �Distribution of the stress �xx for � = 0:5.

Fig. 11 �Distribution of the stress �yy for � = 0:5.

Fig. 9 depicts the variation of horizontal displacement u at di¤erent positions of distance
x (0:0 � x � 4:0) for three di¤erent values of p, namely p = 0:0; 0:2; 0:4. It can be seen
from the pro�le that the displacement u increases as the value of p increases and it exhibits
negligible impact of the hydrostatic initial stress near the boundary of the half-space. It
can also be seen that the maximum impact zone of hydrostatic initial stress p is around
the location x = 0:5 and this impact dies out as we move away from the boundary. For
all the three values of p, displacement �eld shows the same nature.
Fig. 10 and 11 exhibits the space variations of the normal stresses �xx and �yy with

three di¤erent values of p for � = 0:5; �0 = 0:1. Fig. 10 indicates that when the thermally
insulated boundary of the half-space is subjected to a normal load equal to �p0 [Eq.
(50)], �xx shows a negative value �1:0 at the boundary of the half-space for all values of
p = 0:0; 0:2; 0:4 and then it is increasing inside 0:0 � x � 3:5. After some distance from
the boundary, it attains the constant values 0.0, 0.2 and 0.4 respectively which leads to
satisfy the solution (44). Fig. 11 shows that the stress �eld �yy starts with a negative value
at the boundary and then starts to increase to reach its maximum values 0.0, 0.2 and 0.4
respectively. It is interesting to note that the hydrostatic initial stress has an increasing
e¤ect on �yy near the boundary within 0:0 � x � 0:35 (approximately) and then the factor
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hydrostatic initial stress acts to decrease the value of �yy in the range 0:35 � x � 3:5
(approximately). Finally this normal stress component converges to the negative values
0.0, 0.2, 0.4 due to the nature of the analytical solution (45). We can also notice from
these �gures that both the normal stress �elds are compressive in nature and it shows
negligible impact of the hydrostatic initial stress near the boundary of the half-space. So
the maximum impact zone of the factor p is 0:35 � x � 3:5 (approximately).

Fig. 12 �Distribution of the stress �xy for � = 0:5.

Fig. 12 shows distribution of the shearing stress �xy with respect to distance x at three
di¤erent values of p for � = 0:5; �0 = 0:1. We noticed that �xy takes zero value at the
boundary which leads to satisfy the boundary conditions of the problem. All the three
curves show similar trends i.e., starting with zero values then decreasing within the region
0:0 � x � 0:38 and then increases to converge to zero value for x � 0:38. This type of
nature has been seen due to nature of the boundary conditions. The parameter has an
increasing e¤ect on the distribution of the shearing stress �xy. Also the shearing stress
�xy shows its compressive nature as expected.

8. Conclusions

The main goal of this study is to establish a new mathematical model of heat conduction
with time fractional order for a homogeneous isotropic thermoelastic material which is
placed in magnetic �eld with two-temperature under the in�uence of hydrostatic initial
stress as an improvement and progress in the �eld of generalized thermoelasticity du to
the fact that a thermoelastic model with a fractional heat conduction law can describe
simply and elegantly the complex characteristics of a solid body. According to the above
analysis, the following conclusions can be noted :
(i) Figs. 1-12 depicts that, all the physical quantities are restricted in a bounded region

which is in accordance with the �notion�of generalized thermoelasticity theory with �ne
wave speeds and supports the physical facts.
(ii) The fractional parameter has signi�cant e¤ect on all the studied �eld quantities.
(iii) According to the fractional parameter which describes the ability of thermoelastic

material to conduct heat, various type of new classi�cation of materials must be construc-
ted
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(iv) The e¤ect of hydrostatic initial stress parameter on all the studied �elds is very
much signi�cant.
(v) All the physical quantities satisfy the boundary conditions. Deformation of a body

depends on the nature of the applied force as well as the type of boundary conditions.
(vi) Analytical solutions based upon normal mode analysis of the thermoelastic problem

in solids have been developed and utilized.
(vii) From the temperature distributions, we have found wave type heat propagation

with �nite speeds in the medium.
(viii) The introduction of hydrostatic initial stress to the generalized magneto-thermoelastic

half-space medium with a time-fractional heat conduction law provides a more realistic
model for studying various types of problems in this �eld.
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