Revue de l'Information Scientifique et Technique
Volume 17, Numéro 2, Pages 81-95

Utilisation Des Méthodes D’apprentissage Ensembliste Dans Le Datamining Distribué

Auteurs : Mokeddem Djamila . Belbachir Hafida .

Résumé

Le datamining distribué est né du besoin de traiter des données qui peuvent être d’une part très volumineuses, et/ou éventuellement distribuées géographiquement à travers plusieurs sites. Les méthodes d’apprentissage ensembliste en tant que techniques prometteuses en terme de précision, et offrant aussi un aspect ‘distribué’, peuvent être adaptées aux contraintes du datamining distribué. Nous présentons dans cet article les différentes approches permettant d’appliquer les méthodes ensemblistes dans le datamining distribué. Nous nous intéressons plus particulièrement aux travaux utilisant les arbres de décision. Nous montrons que l’adaptation des méthodes ensemblistes à des sous ensembles de données disjoints, dans la perspective de fouiller des données intrinsèquement distribuées, et le parallélisme des méthodes ensemblistes, dans une perspective du passage à l’échelle, pourraient être complémentaires.

Mots clés

Daramining distribué, Méthodes d'apprentissage ensembliste, Arbres de décision